

E11 Lecture 7: Gold Codes

Profs. David Money Harris \& Sarah Harris

Fall 2011

Lab Notes

- Pick up your chassis

Several are still being printed
Printer garbled 4 - let us know if yours is missing

- Please read your lab instructions before attending lab
- Remember to wear suitable machine shop attire this week

No open-toed shoes
No loose garmets
Long hair tied back

Outline

- Gold Code Overview
- Shift Register Sequences
- Gold Code Generation
- Gold Code Detection
- Applications

Overview

Gold Codes are sequences of o's and 1's
Commonly used in communications systems

- Notably GPS and cell phones

Invented by Dr. Robert Gold in 1967
Easy to generate in hardware or software
Have characteristics resembling random noise
Minimally jam other Gold codes transmitted by other sources

Applications

GPS
Multiple satellites transmit information simultaneusly at the same frequency
Receiver can pick out the signals from the individual satellites because each has a unique Gold code

- Your robot will seek beacons flashing different Gold codes Identify the desired beacon by recognizing its code Even if your phototransistor sees multiple interfering beacons PS3: Gold Code Generation; PS6: Gold Code Detection

Mathematical Foundations

Gold codes based on XOR
Shift registers

XOR Review

- XOR of 2 inputs is TRUE if exactly one input is TRUE

XOR of many inputs is TRUE if an ODD \# of inputs are TRUE

- XOR is called a linear function

XOR
$Y=A \oplus B$
A
A

Register

A register copies its input D to its output Q on each step

Shift Register

A shift register shifts all of its bits right each step

D	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}
1	0	0	0	1	0
1					
1					

Linear Feedback Shift Register

- Linear Feedback Shift Register (LFSR)

Feeds XOR of certain bits back to input D

LFSR Operation

Step	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}
0	0	0	0	0	1

1
2
3
4

Taps and Seeds

- Bits fed back are called the taps

LFSR taps are described by a characteristic polynomial
Ex: $1+x^{3}+x^{5}$
Taps in columns 3 and 5
1 is not a tap but corresponds to the input to the first bit x^{0}

- The initial contents of the LFSR are called the seed

Ex: 00001
If the seed is all o's,

Complete Sequence

Step	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}
0	0	0	0	0	11
1	1	0	0	0	0
2	0	1	0	0	0
3	0	0	1	0	0
4	1	0	0	1	0
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					

Step	O_{1}	O_{2}	O_{3}	Q_{4}	Q_{5}
16	0	0	1	1	1
17	0	0	0	1	1
18	1	0	0	0	1
19	1	1	0	0	0
20	0	1	1	0	0
21	1	0	1	1	0
22	1	1	0	1	1
23	1	1	1	0	1
24	0	1	1	1	0
25	1	0	1	1	1
26	0	1	0	1	1
27	1	0	1	0	1
28	0	1	0	1	0
29	0	0	1	0	1
30	0	0	0	1	0
repeat	0	0	0	0	1

Shift Register Sequence

- A shift register sequence is the pattern in the msb

Step	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	Step	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}
0	0	0	0	0	1	16	0	0	1	1	1
1	1	0	0	0	0	17	0	0	0	1	1
2	0	1	0	0	0	18	1	0	0	0	1
3	0	0	1	0	0	19	1	1	0	0	0
4	1	0	0	1	0	20	0	1	1	0	0
5	0	1	0	0	1	21	1	0	1	1	0
6	1	0	1	0	0	22	1	1	0	1	1
7	1	1	0	1	0	23	1	1	1	0	1
8	0	1	1	0	1	24	0	1	1	1	0
9	0	0	1	1	0	25	1	0	1	1	1
10	1	0	0	1	1	26	0	1	0	1	1
11	1	1	0	0	1	27	1	0	1	0	1
12	1	1	1	0	0	28	0	1	0	1	0
13	1	1	1	1	0	29	0	0	1	0	1
14	1	1	1	1	1	30	0	0	0	1	0
15	0	1	1	1	1						

Sequence: 10 00100 110011111000110111010

Maximal Length Sequences

- This is an example of a maximal length shift register seq. Repeats after $31=2^{5-1}$ steps

In general, an N-bit MLSRS repeats after steps

- Not all characteristics polynomials produce MLSRSs

Runs of o's and 1s

- All MLSRS have this distribution

Consistent with the statistics of random bit sequences

Seeding

- Different seeds give shifted version of the sequence

Step	O_{1}	O_{2}	O_{3}	Q_{4}	Q_{5}	Step	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}
0	0	0	0	0	1	16	0	0	1	1	1
1	1	0	0	0	0	17	0	0	0	1	1
2	0	1	0	0	0	18	1	0	0	0	1
3	0	0	1	0	0	19	1	1	0	0	0
4	1	0	0	1	0	20	0	1	1	0	0
5	0	1	0	0	1	21	1	0	1	1	0
6	1	0	1	0	0	22	1	1	0	1	1
7	1	1	0	1	0	23	1	1	1	0	1
8	0	1	1	0	1	24	0	1	1	1	0
9	0	0	1	1	0	25	1	0	1	1	1
10	1	0	0	1	1	26	0	1	0	1	1
11	1	1	0	0	1	27	1	0	1	0	1
12	1	1	1	0	0	28	0	1	0	1	0
13	1	1	1	1	0	29	0	0	1	0	1
14	1	1	1	1	1	30	0	0	0	1	0
15	0	1	1	1	1						

Seed 00010: Sequence 010000100:11001111100011011101

Another MLSRS

$1+X^{2}+X^{3}+X^{4}+x^{5}$ generates a MLSRS: 1000010110101000111011111001001

Gold Codes

- Communication systems need a set of bit sequences that: Are easy to generate with hardware or software Have a low cross-correlation with other sequences in the set
- Easy to tell the sequences apart even when corrupted by noise

Gold Codes are such a class of $2^{N}-1$ sequences of length $2^{\mathrm{N}}-1$ Formed by XORing MLSRSs generated by different taps Each seed gives a different Gold code
Each code is quite different than the others

Naming a Gold Code

- To uniquely define a Gold code:

State characteristic polynomial for the two LFSRs
State seed for the second LFSR
Always use a seed of 00....001 for the first LFSR
Example: GC($\left.1+x^{2}+x^{3}+x^{4}+x^{5}, 1+x^{3}+x^{5}, 00011\right)$

- There are $2^{\mathrm{N}}-\mathbf{1}$ Gold codes in a family

Defined by the different possible seeds (except 00...000)

5-bit Gold Code Examples

GC($\left.1+x^{2}+x^{3}+x^{4}+x^{5}, 1+x^{3}+x^{5}, 00001\right)$
1000010110101000111011111001001 ($1+x^{2}+x^{3}+X^{4}+x^{5}$ seed 00001)
XOr 1000010010110011111000110111010 ($1+x^{3}+x^{5} \quad$ seed 00001) 0000000100011011000011001110011

GC($\left.1+x^{2}+x^{3}+x^{4}+x^{5}, 1+x^{3}+x^{5}, 00010\right)$ 1000010110101000111011111001001 ($1+x^{2}+x^{3}+x^{4}+x^{5}$ seed 00001)
XOr 0100001001011001111100011011101 ($1+x^{3}+x^{5} \quad$ seed 00010)
1100011111110001000111100010100

Gold Code Detection

- Read bit sequence
- Compare detected sequence with known Gold Codes

Use correlation: all possible dot products
Highest correlation indicates detected Gold Code

Dot Product

- Dot product of two binary sequences \#of positions where bits match \# of positions where bits mismatch
- Ex: 110010 • 101010

110010
101010
$\square \square \square \square \square \square$
-> dot product is

Dot Product Significance

- Dot product measures similarity of two sequences

Large positive dot product indicates strong similarity
Large negative dot product indicates nearly all bits differ Dot product near o indicates two sequences are uncorrelated Dot product of l-bit sequence with itself is l

Dot Products of SRS

Example:

```
    1000001000 101100011111100001110111110110(1+ X3+ X5 seed 00001)
```



```
    matches - mismatches
Dot product is
```


Correlation

Cross-correlation of two sequences
Measure of the similarity of the sequences when one is shifted by varying amounts.
Take the dot product of one sequence with each shifted version of the other

- Autocorrelation

Cross-correlation of a sequence with itself.

Autocorrelation Example

$110010 \cdot 110010=6$
$110010 \cdot 011001=-2$
$110010 \cdot 101100=-2$
$110010 \cdot 010110=2$
$110010 \cdot 001011=-2$
$110010 \cdot 100101=-2$
(shift by o)
(shift by 1)
(shift by 2)
(shift by 3)
(shift by 4)
(shift by 5)

Autocorrelation: $6,-2,-2,2 \boldsymbol{r}-2 \boldsymbol{r}-2$

SRS Autocorrelation

A MLSRS has an autocorrelation of $2^{\mathrm{N}}-1$ at an offset of 0 Autocorrelation of -1 at all other offsets

- Hence the MLSRS has characteristics of random noise

Pseudo-Random Bit Sequence

MLSRS is also called a pseudo-random bit sequence (PRBS)
About half the bits are o's and half 1 's
Run length distribution consistent with randomness
Autocorrelation consistent with randomness
But sequence is deterministic and easy to generate with XOR

Gold Code Cross-Correlation

A Gold Code has a correlation of $2^{\mathrm{N}_{-1}}$ with itself
But a relatively low correlation with other codes in the family Maximum cross-correlation is $2^{(N+1) / 2}+1$

- Thus, it is easy to detect the code by correlating

Even in the face of noise that flip some of the bits

- For our 5-bit code, correlation is 31 with itself $\leq+7 /-9$ with other Gold codes
Called a Hamming distance of 31-9 = 22 between codes

Gold Code Correlation

Correlation: Gold Code 1, Gold Code 2
GC 1: 00000000100011011000011001110011 GC 2: 1100011111110001000111100010100
shift $=0$, dot product $=-1$

Cross-Correlation

- Cross-correlation of

$$
\begin{aligned}
& G C\left(1+x^{2}+x^{3}+x^{4}+x^{5}, 1+x^{3}+x^{5}, 00001\right) \\
& G C\left(1+x^{2}+x^{3}+x^{4}+x^{5}, 1+x^{3}+x^{5}, 00010\right)
\end{aligned}
$$

Application: Beacons

- Eight LED beacons on the E11 playing field Beacon $b(b=1, \ldots 8)$ flashes GC $\left(1+x^{2}+x^{3}+x^{4}+x^{5}, 1+x^{3}+x^{5}, b\right)$ 4 KHz data rate (250 microseconds / bit) Sequence is inverted depending on team (white vs. green)
- Detect beacons using a phototransistor on your bot Produces a voltage related to the light intensity Principles of operation to be described later

Identifying a Beacon

1. Read 31 phototransistor samples at 4 KHz
2. Compute average value
3. Convert readings to binary by comparing to average
4. Correlate against each of 31 offsets for each of 8 beacons
5. If correlation exceeds a threshold, report beacon found
6. Improve accuracy by taking more than 31 samples

Application: GPS

24 satellites orbit earth
At least 6 are visible in the unobstructed sky at any time

- All satellites broadcast 10-bit Gold Codes

All share a 1.575 GHz carrier
1.023 MHz code rate

1023 bits / sequence -> repeats every 1 ms
Each satellite jams all of the others

Thermal noise exceeds strength of all satellites combined
wikipedia.com But satellites are identified by correlation (!)

- 50 Hz data rate

Transmitted signal may be inverted based on data value

Application: CDMA

- Code Division Multiple Access (cell phones)

All phones transmit on all frequencies simultaneously
Each uses its own 15-bit (length 32767) Gold Code
Identify the phone by correlating against its Gold Code

- Developed by Qualcomm

Replaces Time Division Multiple Access

- Where each user gets a time slot (TDMA)

Better quality reception when spectrum is not completely full
Central to 3 G and 4 G wireless systems

