E11 Lecture 7: Gold Codes

Profs. David Money Harris & Sarah Harris Fall 2011

Lab Notes

Pick up your chassis

- Several are still being printed
- Printer garbled 4– let us know if yours is missing
- Please read your lab instructions before attending lab
- Remember to wear suitable machine shop attire this week
 - No open-toed shoes
 - No loose garmets
 - Long hair tied back

Outline

- Gold Code Overview
- Shift Register Sequences
- Gold Code Generation
- Gold Code Detection
- Applications

Overview

Gold Codes are sequences of o's and 1's

- Commonly used in communications systems
 - Notably GPS and cell phones
- Invented by Dr. Robert Gold in 1967
- Easy to generate in hardware or software
- Have characteristics resembling random noise
- Minimally jam other Gold codes transmitted by other sources

Applications

• GPS

- Multiple satellites transmit information simultaneusly at the same frequency
- Receiver can pick out the signals from the individual satellites because each has a unique Gold code
- Your robot will seek beacons flashing different Gold codes
 Identify the desired beacon by recognizing its code
 Even if your phototransistor sees multiple interfering beacons
 PS3: Gold Code Generation; PS6: Gold Code Detection

Mathematical Foundations

- Gold codes based on
 - XOR
 - Shift registers

XOR Review

- XOR of 2 inputs is TRUE if exactly one input is TRUE
- XOR of many inputs is TRUE if an ODD # of inputs are TRUE
- XOR is called a *lineαr* function

• A register copies its input D to its output Q on each step

Shift Register

A shift register shifts all of its bits right each step

Linear Feedback Shift Register

Linear Feedback Shift Register (LFSR)
 Feeds XOR of certain bits back to input D

LFSR Operation

Taps and Seeds

Bits fed back are called the taps

- LFSR taps are described by a characteristic polynomial
- Ex: 1 + x³ + x⁵
 - Taps in columns 3 and 5
 - 1 is not a tap but corresponds to the input to the first bit x°
- The initial contents of the LFSR are called the seed
 - Ex: 00001
 - If the seed is all o's,

Complete Sequence

Step	Qı	Q2	Q3	Q4	Q5	Step	Qı	Q2	Q3	Q4	Q5
0	0	0	0	0	1	16	0	0	1	1	1
1	1	0	0	0	0	17	0	0	0	1	1
2	0	1	0	0	0	18	1	0	0	0	1
3	0	0	1	0	0	19	1	1	0	0	0
4	1	0	0	1	0	20	0	1	1	0	0
4 5 6						21	1	0	1	1	0
						22	1	1	0	1	1
7 8						23	1	1	1	0	1
						24	0	1	1	1	0
9						25	1	0	1	1	1
10						26	0	1	0	1	1
11						27	1	0	1	0	1
12						28	0	1	0	1	0
13						29	0	0	1	0	1
14						30	0	0	0	1	0
15						repeat	0	0	0	0	1

Shift Register Sequence

• A *shift register sequence* is the pattern in the msb

Step	Qı	Q2	Q 3	Q4	Q5	Step	Qı	Q2	Q 3	Q4	Q5
0	0	0	0	0	1	16	0	0	1	1	1
1	1	0	0	0	0	17	0	0	0	1	1
2	0	1	0	0	0	18	1	0	0	0	1
3	0	0	1	0	0	19	1	1	0	0	0
4	1	0	0	1	0	20	0	1	1	0	0
5	0	1	0	0	1	21	1	0	1	1	0
5 6	1	0	1	0	0	22	1	1	0	1	1
7	1	1	0	1	0	23	1	1	1	0	1
8	0	1	1	0		24	0	1	1	1	0
9	0	0	1	1		25	1	0	1	1	1
10	1	0	0	1	1	26	0	1	0	1	1
11	1	1	0	0	1	27	1	0	1	0	1
12	1	1	1	0	0	28	0	1	0	1	0
13	1	1	1	1	0	29	0	0	1	0	1
14	1	1	1	1	1	30	0	0	0	1	0
15	0	1	1	1	1						

Sequence: 100001001011111000110111010

Maximal Length Sequences

- This is an example of a maximal length shift register seq.
 Repeats after 31 = 2⁵-1 steps
- In general, an N-bit MLSRS repeats after

steps

Not all characteristics polynomials produce MLSRSs

Runs of o's and 1s

100001001011011000110110001101100
run of length 5
runs of length 4
runs of length 3
runs of length 2
runs of length 1

All MLSRS have this distribution

Consistent with the statistics of random bit sequences

Seeding

Different seeds give shifted version of the sequence

Step	Qı	Q2	Q3	Q4	Q5	Step	Qı	Q2	Q3	Q4	Q5
0	0	0	0	0	1	16	0	0	1	1	1
1	1	0	0	0	0	17	0	0	0	1	1
2	0	1	0	0	0	18	1	0	0	0	1
3	0	0	1	0	0	19	1	1	0	0	0
4	1	0	0	1	0	20	0	1	1	0	0
	0	1	0	0	1	21	1	0	1	1	0
5 6	1	0	1	0	0	22	1	1	0	1	1
7	1	1	0	1	0	23	1	1	1	0	1
7 8	0	1	1	0		24	0	1	1	1	0
9	0	0	1	1		25	1	0	1	1	1
10	1	0	0	1	1	26	0	1	0	1	1
11	1	1	0	0	1	27	1	0	1	0	1
12	1	1	1	0	0	28	0	1	0	1	0
13	1	1	1	1	0	29	0	0	1	0	1
14	1	1	1	1	1	30	0	0	0	1	• 🔶 Se
15	0	1	1	1	1						

eed

Seed 00010: Sequence 0100001001011000111100011011101

Another MLSRS

Gold Codes

Communication systems need a set of bit sequences that: Are easy to generate with hardware or software Have a low cross-correlation with other sequences in the set Easy to tell the sequences apart even when corrupted by noise Gold Codes are such a class of 2^N-1 sequences of length 2^N-1 Formed by XORing MLSRSs generated by different taps Each seed gives a different Gold code Each code is quite different than the others

Naming a Gold Code

To uniquely define a Gold code:

- State characteristic polynomial for the two LFSRs
- State seed for the second LFSR
- Always use a seed of oo...oo1 for the first LFSR
- Example: GC(1+x²+x³+x⁴+x⁵, 1+x³+x⁵, 00011)
- There are 2^N-1 Gold codes in a family
 Defined by the different possible seeds (except oo...ooo)

5-bit Gold Code Examples

• $GC(1+x^2+x^3+x^4+x^5, 1+x^3+x^5, 00001)$

100001011010100011101111001001 (1+x²+x³+x⁴+x⁵ seed 00001)

XOr 10000100101100111100011011010 (1+x³+x⁵ seed 00001) 00000001000110110000110011

 GC(1+X²+X³+X⁴+X⁵, 1+X³+X⁵, 00010) 10000101101000011101111001001 (1+X²+X³+X⁴+X⁵ seed 00001)
 XOr 0100001001011000111100010010101 (1+X³+X⁵ seed 00010) 1100011111110001000111100010000

Gold Code Detection

- Read bit sequence
- Compare detected sequence with known Gold Codes
 Use correlation: all possible dot products
 Highest correlation indicates detected Gold Code

Dot Product

Dot product of two binary sequences
 #of positions where bits match –
 # of positions where bits mismatch

Ex: 110010 • 101010 1 1 0 0 1 0 1 0 1 0 1 0

-> dot product is

Dot Product Significance

Dot product measures similarity of two sequences

- Large positive dot product indicates strong similarity
- Large negative dot product indicates nearly all bits differ
- Dot product near o indicates two sequences are uncorrelated
- Dot product of *l*-bit sequence with itself is *l*

Dot Products of SRS

Correlation

Cross-correlation of two sequences

- Measure of the similarity of the sequences when one is shifted by varying amounts.
- Take the dot product of one sequence with each shifted version of the other

Autocorrelation

Cross-correlation of a sequence with itself.

Autocorrelation Example

- 110010 110010 = 6
- 110010 011001 = -2
- 110010 101100 = -2
- 110010 010110 = 2
- 110010 001011 = -2
- 110010 100101 = -2

(shift by o) (shift by 1) (shift by 2) (shift by 3) (shift by 4) (shift by 5)

Autocorrelation:6, -2, -2, 2, -2, -2

SRS Autocorrelation

A MLSRS has an autocorrelation of 2^N-1 at an offset of o

• Autocorrelation of -1 at all other offsets

Hence the MLSRS has characteristics of random noise

Pseudo-Random Bit Sequence

MLSRS is also called a *pseudo-random bit sequence* (PRBS)

- About half the bits are o's and half 1's
- Run length distribution consistent with randomness
- Autocorrelation consistent with randomness
- But sequence is deterministic and easy to generate with XOR

Gold Code Cross-Correlation

A Gold Code has a correlation of 2^N-1 with itself
 But a relatively low correlation with other codes in the family
 Maximum cross-correlation is 2^{(N+1)/2} + 1

- Thus, it is easy to detect the code by correlating
 Even in the face of noise that flip some of the bits
- For our 5-bit code, correlation is 31 with itself
 - \leq +7/-9 with other Gold codes
 - Called a Hamming distance of 31-9 = 22 between codes

Gold Code Correlation

Correlation: Gold Code 1, Gold Code 2
 GC 1: 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 1 1
 GC 2: 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0

Cross-Correlation

• Cross-correlation of

- **GC(1+x^2+x^3+x^4+x^5, 1+x^3+x^5, 00001)**
- **GC(1+x^2+x^3+x^4+x^5, 1+x^3+x^5, 00010)**

Application: Beacons

Eight LED beacons on the E11 playing field

- Beacon b (b = 1...8) flashes GC(1+x²+x³+x⁴+x⁵, 1+x³+x⁵, b)
- 4 KHz data rate (250 microseconds / bit)
- Sequence is inverted depending on team (white vs. green)

Detect beacons using a phototransistor on your bot

- Produces a voltage related to the light intensity
- Principles of operation to be described later

Identifying a Beacon

- **1.** Read 31 phototransistor samples at 4 KHz
- 2. Compute average value
- 3. Convert readings to binary by comparing to average
- 4. Correlate against each of 31 offsets for each of 8 beacons
- 5. If correlation exceeds a threshold, report beacon found
- 6. Improve accuracy by taking more than 31 samples

Application: GPS

• 24 satellites orbit earth

• At least 6 are visible in the unobstructed sky at any time

All satellites broadcast 10-bit Gold Codes

- All share a 1.575 GHz carrier
- 1.023 MHz code rate
 - 1023 bits / sequence -> repeats every 1 ms
- Each satellite jams all of the others
- Thermal noise exceeds strength of all satellites combined
- But satellites are identified by correlation (!)
- 50 Hz data rate
 - Transmitted signal may be inverted based on data value

wikipedia.com

Application: CDMA

Code Division Multiple Access (cell phones)

- All phones transmit on all frequencies simultaneously
- Each uses its own 15-bit (length 32767) Gold Code
- Identify the phone by correlating against its Gold Code

Developed by Qualcomm

- Replaces Time Division Multiple Access
 - Where each user gets a time slot (TDMA)
- Better quality reception when spectrum is not completely full
- Central to 3G and 4G wireless systems