

# C Programming – Part 1

- What is C?
- Programming Target: Arduino
- Programming Basics
  - Simple C Program
  - Running a Program
- Programming Tools
  - Comments
  - Data Types
  - Variables
  - Console Inputs and Outputs
- More stuff you can do...



# What is C?

- Created by Dennis Ritchie at Bell Laboratories in 1972
- Programming language for making a computer/microcontroller do something.
- One of the most popular programming languages:
  - Available for many platforms (supercomputers to embedded microcontrollers)
  - Relatively easy to use, moderate level of abstraction, but programmer also has an idea of how code will be executed
  - Can interact with hardware directly



# Programming Target: Arduino

- Arduino
  - type of microcontroller



- we'll talk about this a lot more next time
- Overall syntax is same as C
- Some differences (we'll highlight them)
- FYI, Arduino's version of C is called "Arduino"





#### All programs MUST contain these two functions



```
void setup()
{
   Serial.begin(9600);
   Serial.println("Hello world!");
}
void loop()
```



```
void setup()
{
Setup serial port to
run at 9600 baud  Serial.begin(9600);
(bits/second)
```

```
Serial.println("Hello world!");
}
void loop()
{
}
```



```
void setup()
{
Setup serial port to
run at 9600 baud  Serial.begin(9600);
(bits/second)
```

```
Print "hello world!" to
the serial port → Serial.println("Hello world!");
(followed by a
carriage return)
}
void loop() ←
{
}
```



```
void setup()
{
Setup serial port to
run at 9600 baud  Serial.begin(9600);
(bits/second)
```

```
Print "hello world!" to
the serial port
(followed by a
carriage return)
}
In this program, the
loop() ←
{
    void loop() ←
    {
    }
    }
    loop() function does
    nothing (but still must
    be included!)
```



# Running a program on the Arduino

- Run the Arduino software: arduino.exe
  - \\charlie.hmc.edu\Courses\Engineering\E11\fall2011\code\arduino-0022\arduino.exe
- Type the program into the sketch
- Save the file using a meaningful name like "helloworld"
  - From the file menu: File -> Save As
  - The file will save with the .pde extension (helloworld.pde) and place it in a sketch folder
- Connect the Arduino board using an FTDI USB cable
- Change the settings to the correct device and port
  - From the file menu: Tools -> Board -> Arduino Duemilanove or Nano w/ Atmega328
  - Check the USB port settings with Tools -> Serial Port
- Verify the code
- Upload the code
- Open the Serial Monitor (after the code uploads)



# Running a program on the Arduino

- Run the Arduino software: arduino.exe
- Type the program into the *sketch*

| 💿 helloworld   Arduino 0022                                                                                                                                     |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| File Edit Sketch Tools Help                                                                                                                                     |   |
| DODYS B                                                                                                                                                         |   |
| helloworld                                                                                                                                                      | ¢ |
| <pre>// hello_world.pde // 27 Aug 2011 // sarah_harris@hmc.edu void setup() {    Serial.begin(9600);    Serial.println("Hello world!"); } void loop() { }</pre> |   |



# Running a program on the Arduino

- Save the file using a meaningful name like "helloworld"
- Connect the Arduino board using a USB cable
- Change the settings to the correct device and port
- Verify the code
- Upload the code
- Open the Serial Monitor













**Coding: Your Turn!** 

Write a program that repeatedly prints the phrase: "I love E11 already!"



### **Coding: Your Turn!**

Write a program that repeatedly prints the phrase: "I love E11 already!"

```
void setup()
{
   Serial.begin(9600);
}
void loop()
{
   Serial.println("I love E11 already!");
}
```



# C Programming – Part 1

- What is C?
- Programming Target: Arduino
- Programming Basics
  - Simple C Program
  - Running a Program
- Programming Tools
  - Comments
  - Data Types
  - Variables
  - Console Inputs and Outputs
- More stuff you can do...



#### **Comments**

- Are ignored by the computer running the program
- But are **critical** for clarity and organization
- Single-line comment

// single-line comment

• Multiple-line comments

```
/* multiple-line
    comment */
```



### **Data Types**

- A data type tells us:
  - The type of values represented
  - The range of values



### **Data Types**

| Туре          | Size (bits) | Minimum                           | Maximum                             |
|---------------|-------------|-----------------------------------|-------------------------------------|
| char          | 8           | -27 (-128)                        | 2 <sup>7</sup> - 1 (127)            |
| unsigned char | 8           | 0                                 | 2 <sup>8</sup> - 1 (255)            |
| int           | 16          | -2 <sup>15</sup> (-32,767)        | 2 <sup>15</sup> - 1 (32,768)        |
| unsigned int  | 16          | 0                                 | 2 <sup>16</sup> - 1 (65,535)        |
| long          | 32          | -2 <sup>31</sup> (-2,147,483,648) | 2 <sup>31</sup> - 1 (2,147,483,647) |
| unsigned long | 32          | 0                                 | 2 <sup>32</sup> - 1 (4,294,967,295) |
| float         | 32          | $\pm 2^{-126}$                    | $\pm 2^{128} * (2-2^{-15})$         |
| boolean       | 8           | false                             | true                                |



### **Data Types**

| Туре          | Size (bits) | Minimum                           | Maximum                             |
|---------------|-------------|-----------------------------------|-------------------------------------|
| char          | 8           | -27 (-128)                        | 2 <sup>7</sup> - 1 (127)            |
| unsigned char | 8           | 0                                 | 2 <sup>8</sup> - 1 (255)            |
| int           | 16          | -2 <sup>15</sup> (-32,767)        | 2 <sup>15</sup> - 1 (32,768)        |
| unsigned int  | 16          | 0                                 | 2 <sup>16</sup> - 1 (65,535)        |
| long          | 32          | -2 <sup>31</sup> (-2,147,483,648) | 2 <sup>31</sup> - 1 (2,147,483,647) |
| unsigned long | 32          | 0                                 | 2 <sup>32</sup> - 1 (4,294,967,295) |
| float         | 32          | $\pm 2^{-126}$                    | $\pm 2^{128} * (2-2^{-15})$         |
| boolean       | 8           | false                             | true                                |

**Note:** byte = unsigned char

double = float

word = unsigned int



# **Binary numbers: range**

- What happens when a result won't fit in that range?
  - Overflow!
  - For example, with only 2 bits: 11 + 01 = 100 = 00!



#### **Overflow Example**

```
void setup()
{
  char x = 33;
  char y = 257;
  Serial.begin(9600);
  Serial.print("The value of x is ");
  Serial.println(x, DEC);
  Serial.print("The value of y is ");
  Serial.println(y, DEC);
}
void loop()
{
```



#### **Variables**

int cnt = 0;

{ }

```
void setup() {
   char x;
   float y = 7.8;
   boolean found = false;
   x = 12;
   ...
}
void loop()
```



. . .

#### Variables

int count = 0; // global variable

x = 12; /\* x is initialized after it is declared. \*/



### Variables

- All variables must be *initialized* (set to a known value) before they are used
- Global variables:
  - are declared outside of all functions
  - are accessible anywhere in the program
- Local variables
  - are declared within a function
  - are only accessible within that function



#### **Variables**

int cnt = 0;

```
void setup() {
  char x;
  float y = 7.8;
  boolean found = false;
  x = 12;
  • • •
}
void loop()
{
  cnt = 42;
  x = 3;
}
```



### **Coding: Your Turn!**

Write a program that converts the variable x from centimeters to inches and prints the value of x in both units.

```
// convert x from cm to in
int x = 12;
```



# **Console Input and Output**

- Output
  - Serial.print(*string or variable name*);
  - Serial.println(*string or variable name*);
- Input
  - int Serial.read();



# Example: Console Input and Output

int incomingByte = 0; // incoming serial data

```
void setup()
{
   Serial.begin(9600); // opens serial port at 9600 baud
   Serial.println("Enter a value: ");
}
void loop() {
   // read user input
   if (Serial.available() > 0) {
      incomingByte = Serial.read();
      // print result:
      Serial.print("I received: ");
      Serial.println(incomingByte, BYTE);
   }
}
```

| Binary   | Octal | Decimal | Hexadecimal | Glyph | Binary   | Octal | Decimal | Hexadecimal | Glyph | Binary   | Octal | Decimal | Hexadecimal | Glyph |
|----------|-------|---------|-------------|-------|----------|-------|---------|-------------|-------|----------|-------|---------|-------------|-------|
| 010 0000 | 040   | 32      | 20          | space | 100 0000 | 100   | 64      | 40          | @     | 110 0000 | 140   | 96      | 60          |       |
| 010 0001 | 041   | 33      | 21          | 1     | 100 0001 | 101   | 65      | 41          | Α     | 110 0001 | 141   | 97      | 61          | а     |
| 010 0010 | 042   | 34      | 22          |       | 100 0010 | 102   | 66      | 42          | В     | 110 0010 | 142   | 98      | 62          | b     |
| 010 0011 | 043   | 35      | 23          | #     | 100 0011 | 103   | 67      | 43          | С     | 110 0011 | 143   | 99      | 63          | с     |
| 010 0100 | 044   | 36      | 24          | \$    | 100 0100 | 104   | 68      | 44          | D     | 110 0100 | 144   | 100     | 64          | d     |
| 010 0101 | 045   | 37      | 25          | %     | 100 0101 | 105   | 69      | 45          | E     | 110 0101 | 145   | 101     | 65          | е     |
| 010 0110 | 046   | 38      | 26          | &     | 100 0110 | 106   | 70      | 46          | F     | 110 0110 | 146   | 102     | 66          | f     |
| 010 0111 | 047   | 39      | 27          | 1.1   | 100 0111 | 107   | 71      | 47          | G     | 110 0111 | 147   | 103     | 67          | g     |
| 010 1000 | 050   | 40      | 28          | (     | 100 1000 | 110   | 72      | 48          | н     | 110 1000 | 150   | 104     | 68          | h     |
| 010 1001 | 051   | 41      | 29          | )     | 100 1001 | 111   | 73      | 49          | 1     | 110 1001 | 151   | 105     | 69          | i     |
| 010 1010 | 052   | 42      | 2A          | *     | 100 1010 | 112   | 74      | 4A          | J     | 110 1010 | 152   | 106     | 6A          | j     |
| 010 1011 | 053   | 43      | 2B          | +     | 100 1011 | 113   | 75      | 4B          | К     | 110 1011 | 153   | 107     | 6B          | k     |
| 010 1100 | 054   | 44      | 2C          | ,     | 100 1100 | 114   | 76      | 4C          | L     | 110 1100 | 154   | 108     | 6C          | 1     |
| 010 1101 | 055   | 45      | 2D          | -     | 100 1101 | 115   | 77      | 4D          | м     | 110 1101 | 155   | 109     | 6D          | m     |
| 010 1110 | 056   | 46      | 2E          | •     | 100 1110 | 116   | 78      | 4E          | Ν     | 110 1110 | 156   | 110     | 6E          | n     |
| 010 1111 | 057   | 47      | 2F          | 1     | 100 1111 | 117   | 79      | 4F          | 0     | 110 1111 | 157   | 111     | 6F          | ο     |
| 011 0000 | 060   | 48      | 30          | 0     | 101 0000 | 120   | 80      | 50          | Р     | 111 0000 | 160   | 112     | 70          | р     |
| 011 0001 | 061   | 49      | 31          | 1     | 101 0001 | 121   | 81      | 51          | Q     | 111 0001 | 161   | 113     | 71          | q     |
| 011 0010 | 062   | 50      | 32          | 2     | 101 0010 | 122   | 82      | 52          | R     | 111 0010 | 162   | 114     | 72          | r     |
| 011 0011 | 063   | 51      | 33          | 3     | 101 0011 | 123   | 83      | 53          | S     | 111 0011 | 163   | 115     | 73          | S     |
| 011 0100 | 064   | 52      | 34          | 4     | 101 0100 | 124   | 84      | 54          | Т     | 111 0100 | 164   | 116     | 74          | t     |
| 011 0101 | 065   | 53      | 35          | 5     | 101 0101 | 125   | 85      | 55          | U     | 111 0101 | 165   | 117     | 75          | u     |
| 011 0110 | 066   | 54      | 36          | 6     | 101 0110 | 126   | 86      | 56          | V     | 111 0110 | 166   | 118     | 76          | v     |
| 011 0111 | 067   | 55      | 37          | 7     | 101 0111 | 127   | 87      | 57          | W     | 111 0111 | 167   | 119     | 77          | w     |
| 011 1000 | 070   | 56      | 38          | 8     | 101 1000 | 130   | 88      | 58          | Х     | 111 1000 | 170   | 120     | 78          | x     |
| 011 1001 | 071   | 57      | 39          | 9     | 101 1001 | 131   | 89      | 59          | Y     | 111 1001 | 171   | 121     | 79          | у     |
| 011 1010 | 072   | 58      | ЗA          | :     | 101 1010 | 132   | 90      | 5A          | Z     | 111 1010 | 172   | 122     | 7A          | z     |
| 011 1011 | 073   | 59      | 3B          | ;     | 101 1011 | 133   | 91      | 5B          | [     | 111 1011 | 173   | 123     | 7B          | {     |
| 011 1100 | 074   | 60      | 3C          | <     | 101 1100 | 134   | 92      | 5C          | - X   | 111 1100 | 174   | 124     | 7C          | I     |
| 011 1101 | 075   | 61      | 3D          | =     | 101 1101 | 135   | 93      | 5D          | ]     | 111 1101 | 175   | 125     | 7D          | }     |
| 011 1110 | 076   | 62      | ЗE          | >     | 101 1110 | 136   | 94      | 5E          | ۸     | 111 1110 | 176   | 126     | 7E          | ~     |
| 011 1111 | 077   | 63      | 3F          | ?     | 101 1111 | 137   | 95      | 5F          | _     |          |       |         |             |       |

#### ASCII

In my eyes, that should be spelled ASCIII



# Example: Console Input and Output

int incomingByte = 0; // incoming serial data

```
void setup()
{
   Serial.begin(9600); // opens serial port at 9600 baud
   Serial.println("Enter a value: ");
}
void loop() {
   // read user input
   if (Serial.available() > 0) {
      incomingByte = Serial.read();
      // print result:
      Serial.print("I received: ");
      Serial.println(incomingByte, DEC);
   }
}
```



# **Physical Inputs and Outputs**

• Add picture of Arduino



# **Physical Inputs and Outputs**

- Setup:
  - pinMode(pin, mode)
  - *mode* is either: INPUT or OUTPUT
- Output setting a pin value:
  - digitalWrite(pin, value)
  - value is either: HIGH or LOW
- Input
  - digitalRead(*pin*)



#### **Physical Output: LED**

```
// set LED pin as output
 pinMode(13, OUTPUT); // LED pin
 Serial.println("Testing LED");
 digitalWrite(13, HIGH); // turn the LED on
 delay(200); // delay 200 ms
 digitalWrite(13, LOW); // turn the LED off
 delay(200); // delay 200 ms
}
```



### **Physical Output: Speaker**

```
void setup()
ſ
  Serial.begin(9600);
  // set speaker pin and LED as outputs
  pinMode(4, OUTPUT); // speaker pin
 pinMode(13, OUTPUT); // LED pin
}
void loop()
{
  Serial.println("Testing speaker");
  tone(4, 440); // write tone of 440 Hz to speaker
  digitalWrite(13, HIGH); // turn the LED on
  delay(200); // delay 200 ms
 noTone(4); // turn the speaker (pin 4) off
  digitalWrite(13, LOW); // turn the LED off
  delay(200); // delay 200 ms
}
```



# **Useful Resource!!!**

