
E11 Lecture 17:
Debugging

Profs. David Money Harris & Sarah Harris

Fall 2011

2

Understand the System

 If you wrote it:

 Do you understand how the language works?

 Do you understand what the functions do?

 Do you understand how it interfaces with the hardware?

 If somebody else wrote it?

 What is it supposed to do?

 How is it supposed to work?

 Plus all of the above…

 Sometimes, a careful reading of the code reveals the bug

3

4 KHz Phototransistor Reading

#define PHOTOTRANS 4

for (i=0; i<31; i++) {

 beacon[i] = analogRead(PHOTOTRANS);

 delayMicroseconds(250);

}

4

should be 5

interval between
samples > 250 ms

Make it Fail

 Find a way to consistently reproduce the bug

 If you can, you are halfway to finding the bug

 If not, you have a very challenging bug on your hands

 If the bug is erratic:

 Does it behave differently on your partner’s board?

 Does it behave differently based on the power or motors?

 If it is a hardware failure, is it sensitive to VDD or
temperature?

5

 Mudduino 1.0 would occasionally spontaneously freeze up
for a second and then start over from the beginning of
startup()

 Root Cause:

 Fix:

Sporadic Spontaneous Failure

6

A power surge from the motors caused the supply
voltage to droop excessively and the Atmega reset itself.

Add dedicated layers to the Mudduino PCB for power
and ground. Add capacitors to stabilize power supply.

Quit Thinking and Look

 If you don’t see the bug right away by inspection, start
running the program.

 Predict what the program should do at each step (why?)

 Monitor what the program actually does

 Print statements

 Or a debugger

 Look for the first discrepancy

 Now you’ve isolate the bug

7

Gold Code Correlation

if (abs(cor) > maxCor)) maxCor = cor;

 Results
Correlation GC 1, GC 4

-1 7 7 7 7 -1 7 7 -9 -9 -9 -9 -1 -9 -9 -1 7 -1 -1 7 7 7 -1 -1 -1 -9 -1 -1 -1 -1 -1

MAX: -1

 Add print statement:
if (abs(cor) > maxCor)) {

 maxCor = cor;

 Serial.print(“Biggest so far: “);

 Serial.println(maxCor);

}

8

Divide and Conquer

 Searching for the bug in a big program line by line takes
too long.

 Look at the results in the middle.

 If they are good, the problem is later.

 If they are bad, the problem is earlier

 Recursively search in first or second half of the program

 Called a binary search

9

Change One Thing at a Time

 If you make multiple changes at a time, it is hard to know
which one fixed the problem.

 Sometimes you introduce a new bug at the same time you
fix the current one.

10

Keep an Audit Trail

 It is easy to forget what tests you have done

 Especially when the problem is erratic

 Be methodical

 Keep a lab notebook

 For each attempted bug fix, record

 Hypothesis of the cause

 Description of how you are trying to fix it

 Outcome of the attempt

11

Check the Plug

 Easy to overlook “obvious” problems

12

Get a Fresh View

 Easy to miss the cause of a problem when you have been
looking too long.

 Explain it to your lab partner

 Explain it to your roommate

 Take a shower

 Go for a hike

13

If You Didn’t Fix It, It Ain’t Fixed

 Sometimes bugs will seem to go away even though you
haven’t done anything you thought should fix them.

 These bugs usually reappear

 Often at the worst possible time

14

Debugging Down Under

15

Parting Words

 It is hubris to expect your program to work on the first try

 Be sure you have a clear idea of what it should do

 Programming by trial and error is a recipe for slow progress

 Be able to recognize a malfunction

 If the malfunction is reproducible, add print statements and use
divide-and-conquer

 If not, try to make it reproducible

 Pair programming can be a huge help

16

