

E11 Lecture 16: Mechanical Performance

Profs. David Money Harris \& Sarah Harris

Fall 2011

Rules Clarification

Chassis must fit in $7^{\prime \prime}$ sphere
Other parts can hang off
PCB
Wheels
Sensors

Outline

- Motor Modeling
- System Characterization
- Motor Performance

Jow fast can the ro bot go?
\checkmark How hard can it push?

Mechanical Subsystem

- Pololu 1117 DC Brush Motor 11500 RPM @ 6V 70 mA free-run current 800 mA stall current

When shaft is held still
-114.7:1 Gear Train
2.25" diameter wheels

DC Motor Review

- Stator has a permanent magnet

Rotor contains an electromagnet a.k.a. armature

- Commutator reverses the current in the rotor to make motor spin
- Electromagnet coil is a wire with

http://humanoids.dem.ist.utl.pt/servo/overview.html Resistance Inductance

Force at a Distance

- How does the force required to tighten the bolt compare at point A and point B?
A. $F_{A}>F_{B}$
B. $F_{B}>F_{A}$
C. $F_{B}=F_{A}$

http://mdmetric.com/tech/torqcht2.htm

Torque

Torque can be thought of as how hard a system is turning
A force applied at a greater distance creates more torque T=Fxd
Units of Newton-meters (N-m)

Motor Modeling

- Coupled electro-mechanical system

Electrical

- Rotor/armature coil has
R_{a} : resistance
L_{a} : inductance
V_{m} : back electromotive force (EMF)
- T: Torque is proportional to current i

Mechanical

- Shaft and wheel have
J_{m} : moment of inertia
b: damping coefficient
- V_{m} is proportional to angular velocity ω
- Relate angular velocity and torque to input voltage \mathbf{v}

Electromechanical System

- Electrical

Rotor coil has

- R_{a} : resistance
- L_{a} : inductance
- V_{m} : back electromotive force (EMF)
T: Torque is proportional to i

Mechanical

Shaft and wheel have
J_{m} : moment of inertia
b: damping coefficient
ω : angular velocity is proportional to V_{m}

Electrical Governing Equation

$$
v(t)=R_{a} i(t)+L_{a} \frac{d i(t)}{d t}+v_{m}(t)
$$

Mechanical Equation of Motion

$$
J_{m} \frac{d \omega(t)}{d t}+b \omega(t)=T(t)
$$

Coupled Equation

$$
\begin{array}{ccc}
v(t)=R_{a} i(t)+L_{a} \frac{d i(t)}{d t}+v_{m}(t) & \text { (1) } & \text { Electrical Model } \\
v_{m}(t)=K_{e} \omega(t) & \text { (2) } & \text { Back EMF } \\
T(t)=K_{t} i(t) & \text { (3) } & \text { Torque } \\
T(t)=J_{m} \dot{\omega}(t)+b \omega(t) & \text { (4) } & \text { Mechanical Model } \\
v(t)=\frac{L_{a}}{K_{t}} \dot{T}(t)+\frac{R_{a}}{K_{t}} T(t)+K_{e} \omega(t) & \text { (5) } & \text { Substitute (2) and (3) in (1) } \\
\ddot{\omega}(t)+\left(\frac{L_{a} b+R_{a} J_{m}}{K}\right) \dot{\omega}(t)+\left(\frac{R_{a} b+K_{t} K_{e}}{K}\right) \omega(t) & \text { (6) } & \text { Substitute (4) in (5) }
\end{array}
$$

Coupled Equation

$$
v(t)=\frac{L_{a} J_{m}}{K_{t}} \ddot{\omega}(t)+\left(\frac{L_{a} b+R_{a} J_{m}}{K_{t}}\right) \dot{\omega}(t)+\left(\frac{R_{a} b+K_{t} K_{e}}{K_{t}}\right) \omega(t)
$$

O $2^{\text {nd }}$ order linear differential equation relating $\omega(\mathrm{t})$ to $\mathrm{v}(\mathrm{t})$ Speed-voltage relationship

- You'll learn how to solve these in DiffEq Solution involves decaying exponentials and sinusoids

Simplified Equation

- In most DC motors (including ours), the dynamics of the rotor are much slower than those of the RL circuit.

If L_{s} is small, we can neglect that term in (1):

$$
\begin{equation*}
v(t)=R_{a} i(t)+L_{a} \frac{d i(t)}{d t}+v_{m}(t) \tag{1}
\end{equation*}
$$

(5) Substitute (2) and (3) in (1)
$v(t)=\frac{\searrow_{a} L_{m}}{\not K_{t}} \underset{\omega}{ }(t)+\left(\frac{\Delta \Delta \hbar+R_{a} J_{m}}{K_{t}}\right) \dot{\omega}(t)+\left(\frac{R_{a} b+K_{t} K_{e}}{K_{t}}\right) \omega(t)$
Substitute (4) in (5)

Simplified Equation

Now we have a $1^{\text {st }}$ order linear differential equation
Step response the response of the system to a step input
Step response is an exponential Good approximation to the true behavior

$$
v(t)=\left(\frac{R_{a} J_{m}}{K_{t}}\right) \dot{\omega}(t)+\left(\frac{R_{a} b+K_{t} K_{e}}{K_{t}}\right) \omega(t)
$$

System Characterization

A system model depends on many physical parameters R_{a}
L_{a}
J_{m}
b
K_{t}
K_{e}

- System characterization is the process of measuring or calculating the values of these parameters

Characterization Setup

- Characterize motor in conjunction with 114-7:1 gear box This accounts for the speed reduction and any friction introduced by the gear box.

Armature Electrical Parameters

- R_{a} and L_{a} can be measured directly with an RLC meter Hook up to the two terminals of the motor.
$R_{a}=7.56 \Omega \quad L_{a}=2.45 \mathrm{mH}$

J_{m} Calculation

Most of the rotational inertia comes from the body \& wheels Most of the mass of wheels is in the tires

- Rotational inertia of a hollow cylinder :

Inner diameter: R_{1}
Outer diameter: $\mathbf{R}_{\mathbf{2}}$
Mass: m

$$
\mathrm{J}_{\mathrm{w}}=\mathrm{m}\left(\mathrm{R}_{1}^{2}+\mathrm{R}_{2}^{2}\right) / 2
$$

http://members.fortunecity.com/albert66/moment.htm

Total Rotational Inertia

Measure wheel inner and outer diameter $\left(R_{1}\right.$ and $\left.R_{2}\right)$ with ruler

- Measure wheel and body mass (m and M) with a scale
$J_{w}=m\left(R_{1}^{2}+R_{2}^{2}\right) / 2$
$J_{b}=M R_{2}^{2}$
- $J_{m}=J_{w}+J_{b}$

Complete this calculation on Problem Set 8

Torque Constant

- $\mathrm{K}_{\mathrm{t}}=\mathrm{T} / \mathrm{i}$ when shaft is stationary
- Hold shaft still and measure stall current and stall torque Beware of damaging the axle mounts (torque is substantial)
- Stall current $I_{\text {stall }}$: use ammeter: 0.77 A
- Stall torque:
attach a rod of known length d from axle to measuring point attach a spring scale to measuring point and read weight

$$
\begin{aligned}
& \mathrm{d}=5.5 \mathrm{in} \\
& \text { scale }=100 \mathrm{~g}
\end{aligned}
$$

Torque Constant, Cont.

$\mathrm{F}=\mathrm{mg}=(100 \mathrm{~g})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=0.98 \mathrm{~N}$
$T_{\text {stall }}=F d=F *(5.5 \mathrm{in})(0.0254 \mathrm{~m} / \mathrm{in})=0.14 \mathrm{~N}-\mathrm{m}$
$\mathrm{K}_{\mathrm{t}}=\mathrm{T}_{\text {stall }} / \mathrm{I}_{\text {stall }}=(0.14 \mathrm{~N}-\mathrm{m}) /(0.77 \mathrm{~A})=0.18 \mathrm{~N}-\mathrm{m} / \mathrm{A}$

Angular Velocity

- Finding b and K_{e} require measuring angular velocity Place colored tape on wheel
Turn on motor with desired voltage
Allow wheel to spin up to full speed
- Called steady-state operation

Measure time for 20 revolutions with a stopwatch
Compute revolutions per minute (rpm)

- Angular velocity is in units of radians / sec
- $1 \mathrm{rpm}=(1 / 60) \mathrm{rev} / \mathrm{sec}=(2 \pi / 60) \mathrm{rad} / \mathrm{sec}$

Friction

- Friction can be computed from the steady-state velocity and current and from the torque constant.

In steady state, $\mathrm{d} \omega / \mathrm{dt}=0$, so equation simplifies.

- Measure ω and i
- Compute T from i and K_{t}, then find b (PS 8)

Back EMF Constant

Extract Ke from plot of ω vs. V_{m}
Apply known V
Measure steady state ω and I for that V
$\mathrm{V}_{\mathrm{m}}=\mathrm{V}-\mathrm{i} \mathrm{R}_{\mathrm{a}}$
Repeat for various V and generate plot

- Fit a straight line to the plot
$\mathrm{K}_{\mathrm{e}}=\mathrm{Vm} / \omega$ is inverse of slope

Back EMF

$\mathrm{K}_{\mathrm{e}}=1 / 1.86=0.54 \mathrm{~V}-\mathrm{s} / \mathrm{rad}$

Motor Performance

Now we have all the parameters for the motor model
$1^{\text {st }}$ order equation relating speed to voltage When power is switched on, wheels will spin up from o to full speed over some amount of time

- See Problem Set 8

Steady-State Speed

Steady state speed is easier to compute 117.6 RPM @ 7V battery voltage

Relate angular velocity to robot's speed $\mathrm{v}=\omega \mathrm{R}_{\mathbf{2}}$
Steady state \mathbf{v} :

- $(11.6 \mathrm{rev} / \mathrm{min})$ * $(1 \mathrm{~min} / 6 \mathrm{sec})$ * $(2 \pi \mathrm{rad} / \mathrm{rev})$ * $(2.25 / 2 \mathrm{in})$ $=13.8 \mathrm{in} / \mathrm{sec}$

Changing Gear Box

Reducing the gear ratio:

Speed:
Torque:
Controllability:

Increasing Voltage

Higher V supplied to motor:

Speed:
Torque:
Controllability:

Starting and Stopping

- As compared to a robot moving forward at full power, a robot that alternates full power and halting every 0.5 s will move
(a) less than half as fast
(b) exactly half as fast
(c) more than half as fast

