

Profs. David Money Harris & Sarah Harris Fall 2011

Rules Clarification

- Chassis must fit in 7" sphere
- Other parts can hang off
 - PCB
 - Wheels
 - Sensors

Outline

- Motor Modeling
- System Characterization
- Motor Performance
 - How fast can the robot go?
 - How hard can it push?

Mechanical Subsystem

Pololu 1117 DC Brush Motor
11500 RPM @ 6V
70 mA free-run current
800 mA stall current
When shaft is held still
114.7:1 Gear Train

• 2.25" diameter wheels

DC Motor Review

- Stator has a permanent magnet
- Rotor contains an electromagnet
 a.k.a. armature
- Commutator reverses the current in the rotor to make motor spin
- Electromagnet coil is a wire with
 - Resistance
 - Inductance

http://humanoids.dem.ist.utl.pt/servo/overview.html

Force at a Distance

 How does the force required to tighten the bolt compare at point A and point B?

Torque

- Torque can be thought of as how hard a system is turning
- A force applied at a greater distance creates more torque
 T = F x d
 - Units of Newton-meters (N-m)

Motor Modeling

Coupled electro-mechanical system

- Electrical
 - Rotor/armature coil has
 - R_a: resistance
 - L_a: inductance
 - V_m: back electromotive force (EMF)
 - T: Torque is proportional to current i
- Mechanical
 - Shaft and wheel have
 - J_m: moment of inertia
 - b: damping coefficient
 - V_m is proportional to angular velocity ω

Relate angular velocity and torque to input voltage v

Electromechanical System

Electrical

- Rotor coil has
 - R_a: resistance
 - L_a: inductance
 - V_m: back electromotive force (EMF)

Mechanical

- Shaft and wheel have
 - J_m: moment of inertia
 - b: damping coefficient

- T: Torque is proportional to i
- o: angular velocity is proportional to V_m

Shaft Angular velocity: $\omega = v_m/K_e$ Torque: T=K_ti(t)

Electrical Governing Equation

 $v(t) = R_a i(t) + L_a \frac{di(t)}{dt} + v_m(t)$

Mechanical Equation of Motion

 $J_m \frac{d\omega(t)}{dt} + b\omega(t) = T(t)$

Coupled Equation

$v(t) = R_a i(t) + L_a \frac{di(t)}{dt} + v_m(t)$

$$v_m(t) = K_e \omega(t) \tag{2}$$

$$T(t) = K_t i(t)$$

$$T(t) = J_m \dot{\omega}(t) + b\omega(t)$$

$$v(t) = \frac{L_a}{K_t} \dot{T}(t) + \frac{R_a}{K_t} T(t) + K_e \omega(t)$$

$$v(t) = \frac{L_a J_m}{K_t} \ddot{\omega}(t) + \left(\frac{L_a b + R_a J_m}{K_t}\right) \dot{\omega}(t) + \left(\frac{R_a b + K_t K_e}{K_t}\right) \omega(t) \quad (6)$$

(1

(3)

(4)

(5) Substitute
$$(2)$$
 and (3) in (1)

Coupled Equation

$$v(t) = \frac{L_a J_m}{K_t} \ddot{\omega}(t) + \left(\frac{L_a b + R_a J_m}{K_t}\right) \dot{\omega}(t) + \left(\frac{R_a b + K_t K_e}{K_t}\right) \omega(t)$$

- 2nd order linear differential equation relating ω(t) to v(t)
 Speed-voltage relationship
- You'll learn how to solve these in DiffEq
 Solution involves decaying exponentials and sinusoids

Simplified Equation

- In most DC motors (including ours), the dynamics of the rotor are much slower than those of the RL circuit.
- If L_a is small, we can neglect that term in (1):

$$v(t) = R_a i(t) + L_a \frac{di(t)}{dt} + v_m(t)$$

$$v_m(t) = K_e \omega(t)$$

- $T(t) = K_t i(t)$ (3) Torque
- $T(t) = J_m \dot{\omega}(t) + b\omega(t)$ (4) Mechanical Model

(1)

(2)

(5)

$$v(t) = \frac{L_a}{K_t} \dot{T}(t) + \frac{R_a}{K_t} T(t) + K_e \omega(t)$$

$$v(t) = \frac{L_a J_m}{K_t} \dot{\omega}(t) + \left(\frac{L_a b + R_a J_m}{K_t}\right) \dot{\omega}(t) + \left(\frac{R_a b + K_t K_e}{K_t}\right) \omega(t) \quad (6)$$

Substitute (4) in (5)

Substitute (2) and (3) in (1)

Electrical Model

Back EMF

Simplified Equation

Now we have a 1st order linear differential equation
 Step response: the response of the system to a step input
 Step response is an exponential
 Good approximation to the true behavior

$$v(t) = \left(\frac{R_a J_m}{K_t}\right) \dot{\omega}(t) + \left(\frac{R_a b}{K_t}\right) \dot$$

System Characterization

A system model depends on many physical parameters

J_m
 b
 K₊

R_a

La

• K_e

 System characterization is the process of measuring or calculating the values of these parameters

Characterization Setup

Characterize motor in conjunction with 114.7:1 gear box
 This accounts for the speed reduction and any friction introduced by the gear box.

Armature Electrical Parameters

R_a and L_a can be measured directly with an RLC meter
 Hook up to the two terminals of the motor.
 R_a = 7.56 Ω L_a = 2.45 mH

J_m Calculation

Most of the rotational inertia comes from the body & wheels
 Most of the mass of wheels is in the tires

- Rotational inertia of a hollow cylinder :
 - Inner diameter: R₁
 - Outer diameter: R₂
 - Mass: m
 - $J_w = m (R_1^2 + R_2^2)/2$

http://members.fortunecity.com/albert66/moment.htm

Total Rotational Inertia

- Measure wheel inner and outer diameter (R₁ and R₂) with ruler
- Measure wheel and body mass (m and M) with a scale
- $J_w = m (R_1^2 + R_2^2)/2$
- $J_b = M R_2^2$
- $J_m = J_w + J_b$
- Complete this calculation on Problem Set 8

Torque Constant

K_t = T / i when shaft is stationary

- Hold shaft still and measure stall current and stall torque
 Beware of damaging the axle mounts (torque is substantial)
- Stall current I_{stall}: use ammeter: 0.77 A

Stall torque:

- attach a rod of known length d from axle to measuring point
- attach a spring scale to measuring point and read weight
- d = 5.5 in
- scale = 100 g

Torque Constant, Cont.

- F = mg = (100 g) (9.8 m/s²) = 0.98 N
- T_{stall} = Fd = F * (5.5 in)(0.0254 m/in) = 0.14 N-m
- $K_t = T_{stall} / i_{stall} = (0.14 \text{ N-m}) / (0.77 \text{ A}) = 0.18 \text{ N-m/A}$

Angular Velocity

Finding b and K_e require measuring angular velocity
Place colored tape on wheel
Turn on motor with desired voltage
Allow wheel to spin up to full speed

Called steady-state operation

Measure time for 20 revolutions with a stopwatch
Compute revolutions per minute (rpm)

Angular velocity is in units of radians / sec

1 rpm = (1/60) rev/sec = (2 π /60) rad/sec

Friction

 Friction can be computed from the steady-state velocity and current and from the torque constant.

$$J_m \frac{d\omega(t)}{dt} + b\omega(t) = T(t)$$

In steady state, $d\omega/dt = o$, so equation simplifies.

Measure ω and i

Compute T from i and K_t, then find b (PS 8)

Back EMF Constant

• Extract Ke from plot of ω vs. V_m

- Apply known V
- Measure steady state ω and I for that V

$$V_m = V - iR_a$$

- Repeat for various V and generate plot
- Fit a straight line to the plot
 - $K_e = Vm/\omega$ is inverse of slope

Back EMF

K_e = 1/1.86 = 0.54 V-s / rad

Motor Performance

- Now we have all the parameters for the motor model
- 1st order equation relating speed to voltage
 - When power is switched on, wheels will spin up from o to full speed over some amount of time
- See Problem Set 8

Steady-State Speed

Steady state speed is easier to compute
 117.6 RPM @ 7 V battery voltage

- Relate angular velocity to robot's speed
 - $v = \omega R_2$
 - Steady state v:

(11.6 rev/min) * (1 min / 60 sec) * (2π rad/rev) * (2.25/2 in)
 = 13.8 in/sec

Changing Gear Box

- Reducing the gear ratio:
 - Speed:
 - Torque:
 - Controllability:

Increasing Voltage

• Higher V supplied to motor:

- Speed:
- Torque:
- Controllability:

Starting and Stopping

- As compared to a robot moving forward at full power, a robot that alternates full power and halting every 0.5 s will move
 - (a) less than half as fast
 - (b) exactly half as fast
 - (c) more than half as fast