

E11 Lecture 14: Capacitors \& Inductors

Profs. David Money Harris \& Sarah Harris

Fall 2011

Outline

- Frequencies
- Capacitors
- Inductors

O $1^{\text {st }}$ order systems
DC Response
Step Response

Frequencies

Consider a signal $x(t)=\cos (\omega t)$
ω is the frequency of the signal (in units of radians/sec)
If $\omega=0, x(t)=1$
Zero frequency is a constant signal, called DC (direct current)
If ω is relatively small, signal is called low frequency
If ω is relatively large, signal is called high frequency

Capacitor

A capacitor consists of two conductors separated by an insulator.

- When a voltage V is applied, positive charge +O accumulates on one plate and negative charge -Q accumulates on the other.
- The capacitance is the ratio of charge to voltage: Q = CV
- Units of Farads (farad = coulomb / volt)

Michael Faraday

- 1791-1867

Onglish chemist and physicist

- Poor family, little formal education Didn't know calculus

One of history's best experimentalists

- Professor at the Royal Institution
- Inventor of motors
- Established the basis for concept of electromagnetic field

en.wikipedia.org/wiki/File:Michael_Faraday_001.jpg

Capacitor I-V Relationship

Q = CV
Current is I = dO/dt
Hence

$$
I=C \frac{d V}{d t}
$$

Capacitor Energy Storage

A capacitor stores energy in the form of the electric field created by the charge.

- If a capacitor is charged from o to $\mathrm{V}_{\mathrm{DD} \text {, }}$ the energy stored is

$$
\begin{aligned}
E & =\int_{0}^{T} P d t \\
& =\int_{0}^{T} V I d t \\
& =\int_{0}^{T} C V \frac{d V}{d t} d t \\
& =\int_{0}^{V_{D D}} C V d V \\
& =\frac{1}{2} C V_{D D}^{2}
\end{aligned}
$$

Capacitor Behavior

A capacitor doesn't like to change its voltage instantly. Requires current
Requires energy

- Capacitor looks like:

Open circuit at low frequency
Short circuit at high frequency

Capacitor Applications

Store electrical energy
Stabilize a voltage (such as the power supply)
Capacitor opposes changes to its voltage
Passing only high frequency signals

Capacitor Types

- Ceramic Disk

Typical values of $10 \mathrm{pF}-100 \mathrm{nF}$
Cheap and reliable
No polarity

- Electrolytic

Popular for values > $1 \mu \mathrm{~F}$
Cheap
Wide tolerances ($\sim-50 \% /+100 \%$)
Polarized, can explode if hooked backward

leds-capacitors-manufacturer.com

diytrade.com

- Tantalum

Similar to electrolytic, but smaller and more expensive

Inductor

An inductor consists of a coil of wire.

- Current flowing in the wire induces a magnetic field
- Changing the magnetic field induces a voltage

- Inductance L has units of Henries (Volts / (Amperes/sec))

Joseph Henry

1797-1878
American scientist
Poor family, father died young
Research was the basis of the telegraph

- First secretary of the Smithsonian

www.photolib.noaa.gov/bigs/pers0124.jpg

Inductor Energy Storage

An inductor stores energy in the form of the magnetic field created by the current.

If an inductor has current I flowing, the energy stored is

$$
\begin{aligned}
E & =\int_{0}^{T} P d t \\
& =\int_{0}^{T} I V d t \\
& =\int_{0}^{T} I L \frac{d I}{d t} d t \\
& =\int_{0}^{I} L I d I \\
& =\frac{1}{2} L I^{2}
\end{aligned}
$$

Inductor Behavior

An inductor doesn't like to change its current instantly.
Requires voltage
Requires energy

- Inductor looks like:

Short circuit at low frequency
Open circuit at high frequency

Inductor Applications

Store magnetic energy

- Magnetically operate electromechanical systems

Passing only low frequency signals

Inductor Types

- Coils

Often wound on iron core to increase magnetic field
Typical values of $10 \mu \mathrm{H}-100 \mathrm{mH}$
Relatively expensive compared to capacitors

http://personal.ee.surrey.ac.uk/Personal/H.M/UG Labs/components/inductors.htm

First Order Systems

A $1^{\text {st }}$ order system is described by a $1^{\text {st }}$ order differential eq An equation with just a first derivative

Systems with a single energy storage element are $1^{\text {st }}$ order e.g. a single inductor or capacitor

Example: RC Circuit

Apply KCL to find governing equation

$$
\begin{aligned}
& I_{1}=\frac{V-x}{R} \\
& I_{2}=C \frac{d x}{d t} \\
& I_{1}=I_{2} \\
& \frac{d x}{d t}+\frac{x}{R C}=\frac{V}{R C}
\end{aligned}
$$

RC Circuit DC Response

What is the voltage at node x ?
A) 0 V
B) 2.5 V
C) 5 V
D) infinity

Differential Equations

This is a $1^{\text {st }}$ order differential equation An equation involving a single derivative

Solving differential equations
Need to know the initial condition (value of x at the start)
Guess the form of the answer

- Use intuition about functions, or past experience
- All $1^{\text {st }}$ order DiffEqs have solution of the form

```
x(t)=A 的
```

Substitute the guess into the equation and check Use initial condition to solve for free variable

RC Circuit DC Response

Two ways to analyze
Formal: $\frac{d x}{d t}+\frac{x}{R C}=\frac{V}{R C}$
$\mathrm{V}=$ constant 5 V
x must be constant $->\mathrm{dx} / \mathrm{dt}=0$
$\mathrm{x}=\mathrm{V}=5 \mathrm{~V}$
O Intuitive

Capacitor looks like open circuit at DC

$$
\text { By voltage divider, } x=V \frac{\infty}{\infty+R}=V
$$

RC Circuit DC Response

What is the voltage at node x ?
A) 0 V
B) 2.5 V
C) 5 V
D) infinity

RC Circuit Step Response

A step is an abrupt change from one value to another.
What happens if the input voltage steps from 5 to 0 at time $\mathrm{t}=\mathrm{o}$?

RC Circuit Step Response

$$
\frac{d x}{d t}+\frac{x}{R C}=\frac{V(t)}{R C} \quad V(t)= \begin{cases}5 & t<0 \\ 0 & t>0\end{cases}
$$

$x(t)=5$ for $t<0$ (initial condition)
$x(t)$ for $t>0$ must be a function whose derivative is of the same form so it can cancel

Guess

$$
x(t)=A e^{\bar{\tau}}+B
$$

Initial condition: $x(0)=5->A+B=5$

- Hence $x(t)=5 e^{\frac{-t}{R C}}$

After step

$$
\frac{d}{d t}\left(A e^{\frac{-t}{\tau}}+B\right)+\frac{A e^{\frac{-t}{\tau}}+B}{R C}=0
$$

$$
\frac{-1}{\tau} A e^{\frac{-t}{\tau}}+\frac{A e^{\frac{-t}{\tau}}+B}{R C}=0
$$

$$
\tau=R C ; B=0
$$

RC Circuit Response

τ is the time constant

- Capacitor won't change voltage instantaneously
- τ describes how fast exponential approaches final value

After 3τ, output is ~ 0

- All $1^{\text {st }}$ order systems have a response in the form of an exponential approaching the final value

Step Response

What would the RC circuit be to a rising step?

RC Circuit Step Response

$$
\frac{d x}{d t}+\frac{x}{R C}=\frac{V(t)}{R C} \quad V(t)= \begin{cases}0 & t<0 \\ 5 & t>0\end{cases}
$$

Solution is of the form

$$
x(t)=A e^{\frac{-t}{\tau}}+B
$$

Initial condition: $x(0)=0->A+B=0$
After step:

$$
\begin{aligned}
& \frac{d}{d t}\left(A e^{\frac{-t}{\tau}}+B\right)+\frac{A e^{\frac{-t}{\tau}}+B}{R C}=5 \\
& \frac{-1}{\tau} A e^{\frac{-t}{\tau}}+\frac{A e^{\frac{-t}{\tau}}+B}{R C}=5 \\
& \tau=R C ; B=5
\end{aligned}
$$

$$
x(t)=5-5 e^{\frac{-t}{R C}}=5\left(1-e^{\frac{-t}{R C}}\right)
$$

