

Profs. David Money Harris & Sarah Harris Fall 2011

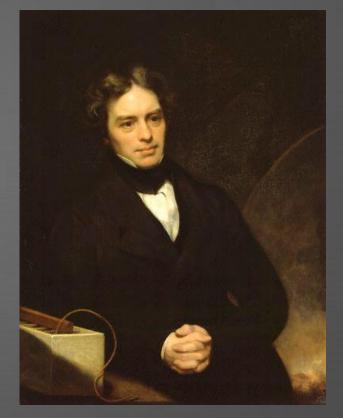
Outline

- Frequencies
- Capacitors
- Inductors
- 1st order systems
 - DC Response
 - Step Response

Frequencies

- Consider a signal x(t) = cos(ωt)
- ω is the frequency of the signal (in units of radians/sec)
- If $\omega = o_i x(t) = 1$
 - Zero frequency is a constant signal, called DC (direct current)
- If ω is relatively small, signal is called *low frequency*
- If ω is relatively large, signal is called high frequency

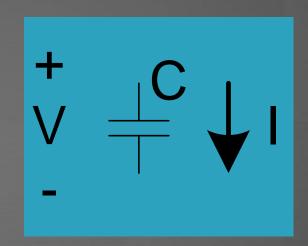
Capacitor


A capacitor consists of two conductors separated by an insulator.

- When a voltage V is applied, positive charge +Q accumulates on one plate and negative charge –Q accumulates on the other.
- The capacitance is the ratio of charge to voltage:
 Q = CV
- Units of Farads (farad = coulomb / volt)

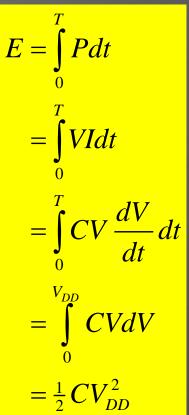
Michael Faraday

1791-1867


- English chemist and physicist
- Poor family, little formal education
 Didn't know calculus
- One of history's best experimentalists
- Professor at the Royal Institution
- Inventor of motors
- Established the basis for concept of electromagnetic field

en.wikipedia.org/wiki/File:Michael_Faraday_001.jpg

Capacitor I-V Relationship


- Q = CV
- Current is I = dQ/dt
- Hence

Capacitor Energy Storage

 A capacitor stores energy in the form of the electric field created by the charge.

 If a capacitor is charged from o to V_{DD}, the energy stored is

Capacitor Behavior

A capacitor doesn't like to change its voltage instantly.

- Requires current
- Requires energy
- Capacitor looks like:
 - Open circuit at low frequency
 - Short circuit at high frequency

Capacitor Applications

- Store electrical energy
- Stabilize a voltage (such as the power supply)
 Capacitor opposes changes to its voltage
- Passing only high frequency signals

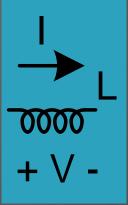
Capacitor Types

Ceramic Disk

- Typical values of 10 pF 100 nF
- Cheap and reliable
- No polarity
- Electrolytic
 - Popular for values > 1 μF
 - Cheap
 - Wide tolerances (~ -50% / +100%)
 - Polarized, can explode if hooked backward

leds-capacitors-manufacturer.com

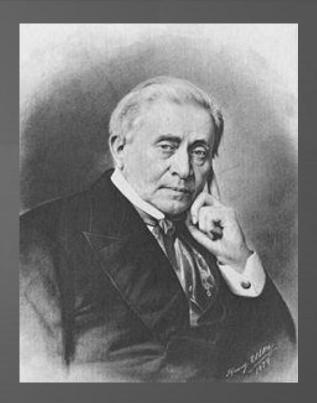
diytrade.com


Tantalum

Similar to electrolytic, but smaller and more expensive

Inductor

- An inductor consists of a coil of wire.
- Current flowing in the wire induces a magnetic field
- Changing the magnetic field induces a voltage


$$V = L \frac{dI}{dt}$$

Inductance L has units of Henries (Volts / (Amperes/sec))

Joseph Henry

- **1797-1878**
- American scientist
- Poor family, father died young
- Research was the basis of the telegraph
- First secretary of the Smithsonian

www.photolib.noaa.gov/bigs/perso124.jpg

Inductor Energy Storage

- An inductor stores energy in the form of the magnetic field created by the current.
- If an inductor has current I flowing, the energy stored is

Inductor Behavior

An inductor doesn't like to change its current instantly.

- Requires voltage
- Requires energy
- Inductor looks like:
 - Short circuit at low frequency
 - Open circuit at high frequency

Inductor Applications

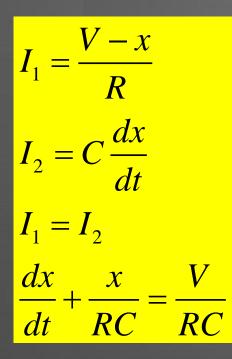
- Store magnetic energy
- Magnetically operate electromechanical systems
- Passing only low frequency signals

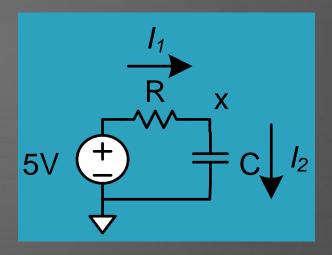
Inductor Types

Coils

 Often wound on iron core to increase magnetic field
 Typical values of 10 µH – 100 mH
 Relatively expensive compared to capacitors

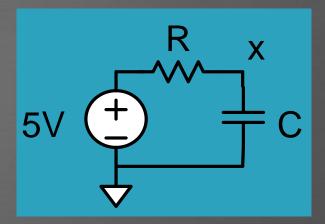
http://personal.ee.surrey.ac.uk/Personal/H.M/UG Labs/components/inductors.htm

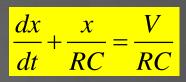

First Order Systems


A 1st order system is described by a 1st order differential eq
 An equation with just a first derivative

Systems with a single energy storage element are 1st order
 e.g. a single inductor or capacitor

Example: RC Circuit


Apply KCL to find governing equation


RC Circuit DC Response

- What is the voltage at node x?
- A) o V
- B) 2.5 V
- C) 5 V
- D) infinity

Differential Equations

This is a 1st order differential equation
 An equation involving a single derivative

Solving differential equations

- Need to know the initial condition (value of x at the start)
- Guess the form of the answer
 - Use intuition about functions, or past experience
 - All 1st order DiffEqs have solution of the form

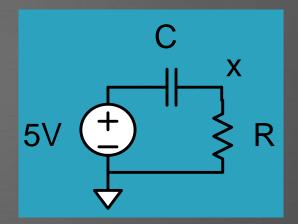
$$x(t) = Ae^{\frac{-t}{\tau}} + B$$

Substitute the guess into the equation and check
Use initial condition to solve for free variable

RC Circuit DC Response

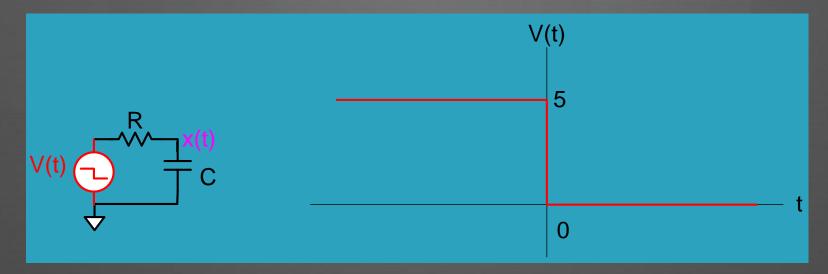
- Two ways to analyze
 Formal: $\frac{dx}{dt} + \frac{x}{RC} = \frac{V}{RC}$ V = constant 5 V
 - x must be constant -> dx/dt = o
 - x = V = 5V

5V + C


Intuitive

- Capacitor looks like open circuit at DC
- By voltage divider,

$$x = V \frac{\infty}{\infty + R} = V$$


RC Circuit DC Response

- What is the voltage at node x?
- A) o V
- B) 2.5 V
- C) 5 V
- D) infinity

RC Circuit Step Response

- A step is an abrupt change from one value to another.
- What happens if the input voltage steps from 5 to 0 at time t = 0?

RC Circuit Step Response

$$\frac{dx}{dt} + \frac{x}{RC} = \frac{V(t)}{RC} \qquad V(t) = \begin{cases} 5 & t < 0\\ 0 & t > 0 \end{cases}$$

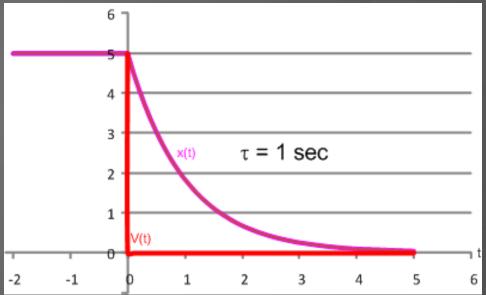
x(t) = 5 for t < 0 (initial condition)</p>

x(t) for t > 0 must be a function whose derivative is of the same form so it can cancel
 After step

 $\frac{d}{dt}\left(Ae^{\frac{-t}{\tau}}+B\right)+\frac{Ae^{\frac{1}{\tau}}+B}{RC}=0$

 $\frac{-1}{\tau}Ae^{\frac{-t}{\tau}} + \frac{Ae^{\frac{-t}{\tau}}}{BC} = 0$

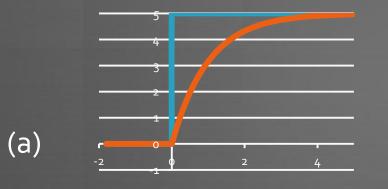
 $\tau = RC; B = 0$

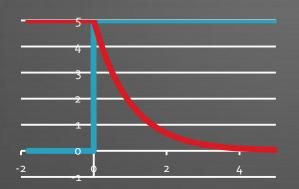

• Guess $x(t) = Ae^{\frac{-t}{\tau}} + B$

Initial condition: x(o) = 5 -> A+B = 5

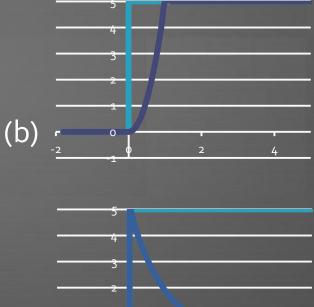
• Hence
$$\frac{x(t) = 5e^{\frac{-t}{RC}}}{x(t)}$$

RC Circuit Response


- τ is the *time constant* Capacitor won't change voltage instantaneously
- τ describes how fast exponential approaches final value
- After 3τ , output is ~ o



 All 1st order systems have a response in the form of an exponential approaching the final value


Step Response

• What would the RC circuit be to a rising step?

(C)

RC Circuit Step Response

$$\frac{dx}{dt} + \frac{x}{RC} = \frac{V(t)}{RC} \qquad V(t) = \begin{cases} \\ \end{cases}$$

$$V(t) = \begin{cases} 0 & t < 0 \\ 5 & t > 0 \end{cases}$$

Solution is of the form

$$x(t) = Ae^{\frac{-t}{\tau}} + B$$

- Initial condition: x(o) = o -> A+B = o
- After step:

Hence,

$$x(t) = 5 - 5e^{\frac{-t}{RC}} = 5\left(1 - e^{\frac{-t}{RC}}\right)$$

$$\frac{d}{dt}\left(Ae^{\frac{-t}{\tau}}+B\right) + \frac{Ae^{\frac{-t}{\tau}}+B}{RC} = 5$$
$$\frac{-1}{\tau}Ae^{\frac{-t}{\tau}} + \frac{Ae^{\frac{-t}{\tau}}+B}{RC} = 5$$
$$\tau = RC; B = 5$$