

E11 Lecture 12: Diodes \&

 TransistorsProfs. David Money Harris \& Sarah Harris

Fall 2011

Outline

- Semiconductors
- Diodes
- Transistors

Semiconductors

Silicon is a Group IV Material
Forms tetrahedral crystal with bonds to four neighbors
Adjustable conductivity

Dopants

Silicon is a semiconductor
Pure silicon has no free carriers and conducts poorly

- Adding dopants increases the conductivity

Group V: extra electron (n-type)

- Group III: missing electron, called hole (p-type)

Diodes

A p-n junction is called a diode p side is called anode
n side is called cathode

- Current only flows from anode to cathode When $\mathrm{V}_{\text {diode }}>\mathrm{V}_{\text {on }}$

$V_{\text {on }} \approx 0.7 \mathrm{~V}$ for silicon diodes
Approximate I-V behavior

Light Emitting Diode

- Electron-hole recombination in a diode releases photons

Wavelength of photons depends on semiconductor's bandgap

- GaAs and related materials glow red, yellow, green, or blue
$\mathrm{V}_{\text {on }}$ depends on material, typically $\sim 1.7 \mathrm{~V}$
Typically 5-20 mA gives satisfactory brightness

Nick Holonyak

1928-
Invented the first practical visible LED in 1962 while at GE

EE Prof at University of Illinois

- Also invented laser diode and light dimmer

LED Circuit Analysis

What value of R makes $\mathrm{I}_{\text {LED }}=10 \mathrm{~mA}$?
a) 10Ω
b) 100Ω
c) 330Ω
d) $3 \mathrm{k} \Omega$

npn Bipolar Junction Transistor

Made of two back-to-back diodes
Behaves as a current-controlled switch

- 3 Terminals

Base (control)
Emitter (negative switch terminal)
Collector (positive switch terminal)

William Shockley

1910-1989
Son of a mining engineer

- B.S. Caltech, Ph.D. MIT

O Invented BJT in 1948 @ Bell Labs

- Supervised Bardeen \& Brattain who invented first transistor in 1947
The three received the Nobel Prize in Physics in 1956

npn Transistor Behavior

Base-to-emitter junction is a diode
Small base current allows larger collector current to flow

- Three operating regions:

Cutoff:

- no current flows

Linear:

- collector current proportional to base current

Saturation:

- collector current ceases to increase with base current

Operating Regions

- Three operating regions:

Cutoff:

- base-emitter diode off

$$
\begin{aligned}
& \mathrm{V}_{\text {be }}<\mathrm{V}_{\text {on }} \\
& \mathrm{I}_{\mathrm{c}}=0
\end{aligned}
$$

no current flows
Linear:

- base-emitter diode on
- collector current

$$
\mathrm{V}_{\mathrm{be}}=\mathrm{V}_{\mathrm{on} t} \mathrm{~V}_{\mathrm{ce}}>0
$$

proportional to base current
β typically around 100, but highly variable

Saturation:

- base-emitter diode on
$\mathrm{V}_{\mathrm{be}}=\mathrm{V}_{\mathrm{on} t} \mathrm{~V}_{\mathrm{ce}} \approx 0$
- collector current independent of base current

Linear and Saturation Models

When $\mathrm{V}_{\text {be }} \approx 0.7 \mathrm{~V}_{\text {, transistor turns }} \mathrm{ON}$
If $\mathrm{V}_{\mathrm{ce}}>0$, transistor behaves as a
current amplifier

$$
I_{c}=\beta I_{b}
$$

- If V_{ce} falls to $0, \mathrm{I}_{\mathrm{c}}$ ceases to rise with I_{b} Saturation

Transistor Applications

Amplifiers
Switches

Transistor Amplifier

For $\mathrm{V}_{\text {in }}<0.7$, Cutoff, $\mathrm{I}_{\mathrm{c}}=0, \mathrm{~V}_{\text {out }}=\mathrm{V}_{\mathrm{cc}}$
For $V_{\text {in }}>0.7$, linear mode of operation

$$
\begin{gathered}
I_{b}=\frac{V_{\text {in }}-0.7}{R_{b}} \\
I_{c}=\beta I_{b} \\
V_{\text {out }}=V_{c c}-I_{c} R_{c}=V_{c c}-\beta \frac{R_{c}}{R_{b}}\left(V_{\text {in }}-0.7\right) \\
\text { Gain }=\frac{d V_{\text {out }}}{d V_{\text {in }}}=-\beta \frac{R_{c}}{R_{b}}
\end{gathered}
$$

But $\mathrm{V}_{\text {out }}$ never falls below o Transistor saturates first

Amplifier Behavior

Transistor as Switch

- Turn on or off a high-current load Such as the motor
Needs more current than digital I/O
- If D2 $=0$, transistor is cutoff No current flows to load
- If D2 $=1(5 \mathrm{~V})$, transistor saturates

$$
I_{b}=(5-0.7) / 215=20 \mathrm{~mA}
$$

I_{c} of up to $\sim 2 A$ flows to load

Enough to pull x down close to 0

