

Profs. David Money Harris & Sarah Harris Fall 2011

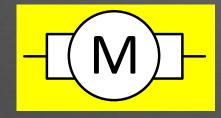
Outline

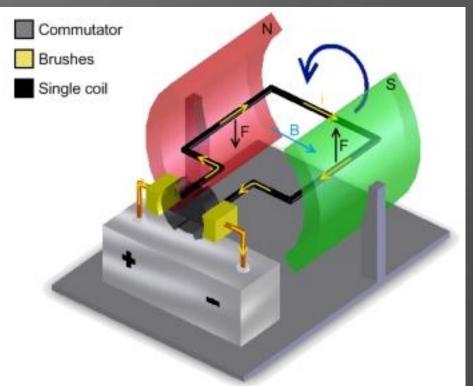
- Actuators
 - DC Motor
 - Servo Motor
 - Stepper Motor
- Sensors
 - Phototransistor
 - Reflectance Sensor
 - IR Distance Sensor
 - Contact Switch
 - Bend Sensor
 - Other Sensors

Logistics

 Bring your laptop, robot, programming cable to the rest of the lab sessions this fall

Pick your partner for Lab 6 & Final Project
Must be in your lab section


DC Motor


DC motors spin when a steady voltage is applied
 Can draw significant current (~ 1A or more)

Fixed permanent magnet

Rotating coil

Brushes

E11 Motors

Operating Voltage: 3-12 V

• At 6 V operation:

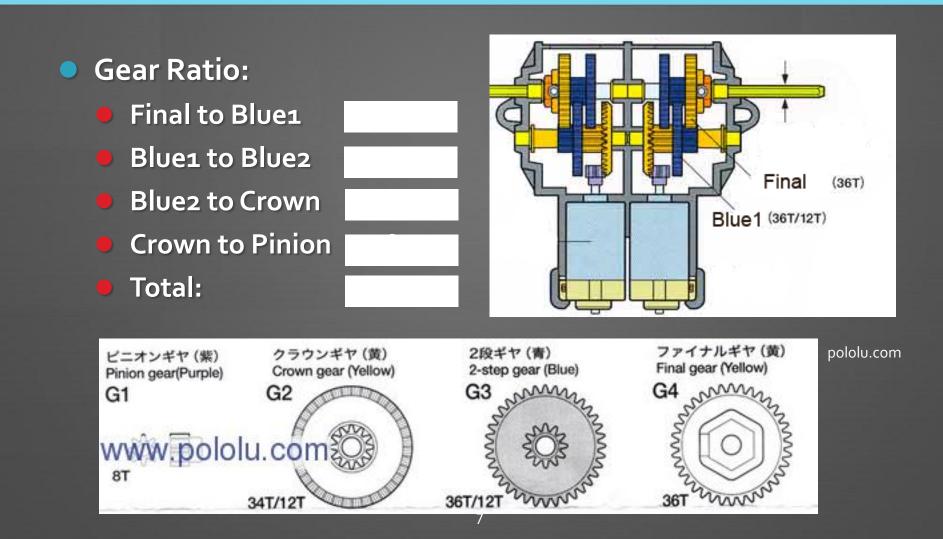
Free run speed: 11,500 RPM

- Unloaded current: 70 mA
- Stall current: 800 mA

~o.5 oz-in torque


Gearing

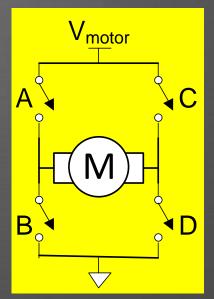
DC motors spin too fast
And too little torque


Gears slow the load rotation
Also increase torque

 In this example, load spins at half the speed of the driver

• Gear ratio:
$$\frac{\omega_B}{\omega_A} = \frac{N_A}{N_B}$$

Example: Tamiya Gear Box

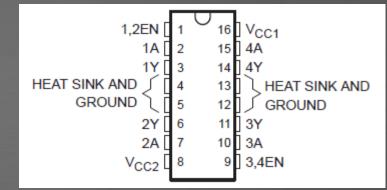


H-Bridge

Motors require large current to operate
 But Arduino outputs only offer 40 mA

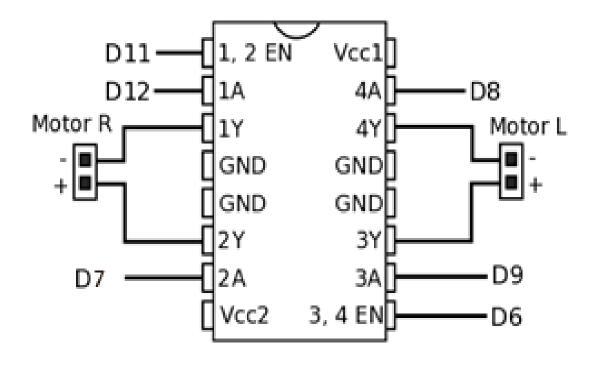
• H-Bridges are used to drive the large current

Α	В	С	D	Motor
ON	OFF	OFF	ON	
OFF	ON	ON	OFF	
ON	OFF	ON	OFF	
OFF	OFF	OFF	OFF	
ON	ON	OFF	OFF	



SN754410 H-Bridge

754410 Dual H-Bridge is easy to control with digital logic


V_{CC1} = Logic Supply (5V)
 V_{CC2} = Motor Supply (4.5-36 V)

12En	ıA	2A	Motor
0	Х	Х	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Contains two H-Bridges to drive two motors

Mudduino H-Bridge Interface

Motor Driver Software

#define LEN 6
#define LPLUS 9
#define LMINUS 8

```
void forward(void)
```

{

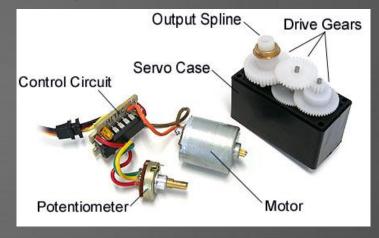
digitalWrite(LEN, 1);
digitalWrite(LPLUS, 1);
digitalWrite(LMINUS, 0);
// similar for right motor...

Shaft Encoding

Sometimes it helps to know the position of the motor

Optical shaft encoder

- Disk with slits attached to motor shaft
- Light and optical sensor on opposite sides of disk
- Count light pulses as the disk rotates

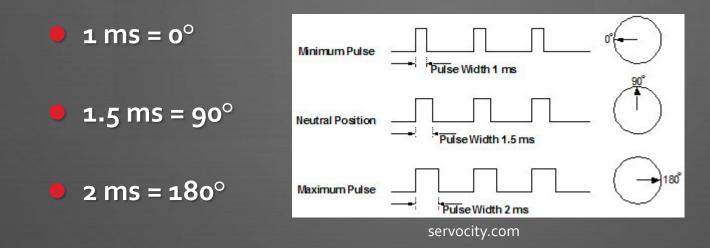

Analog shaft encoder

- Connect potentiometer (variable resistor) to shaft
- Resistance varies as shaft turns
- Our DC motors don't have shaft encoders built in

Servo Motor

Servo motors are designed to be easy to use

- DC motor
- Gearing
- Analog shaft encoder
- Control circuitry
- High-current driver
- Three wires: 5V, GND, Control



servocity.com

- Turn from o to 180 degrees
 - Position determined by pulses on control wire

Servo Pulse Width Modulation

- Control position with 50 Hz (20 ms) pulses
- Pulse width modulation (PWM)

SG90 Servo

- 4.0 7.2 V Operation
- At 4.8 V
 - Speed: 0.12 sec / 60 degrees (83 RPM)
 - Stall Torque: 16.7 oz-in

hobbypartz.com

Arduino Servo Library

Arduino offers a servo library for controlling servos

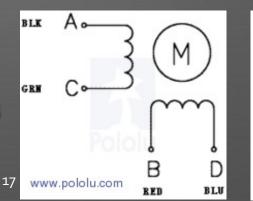
```
// servotest.pde
// David_Harris@hmc.edu 1 October 2011
```

#include <Servo.h>

```
// pins
#define SERVOPIN 10
```

```
// Global variable for the servo information
Servo servo;
```

```
void testServo()
```

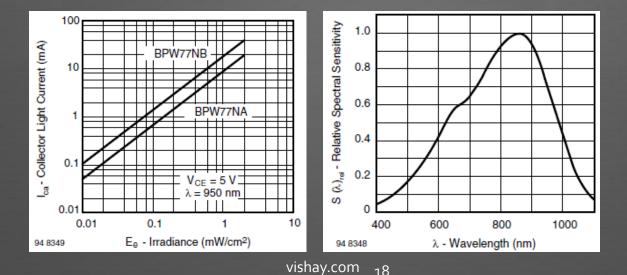

```
initServo();
servo.write(90); // set angle between 0 and 180 degrees
}
void initServo()
```

```
pinMode(SERVOPIN, OUTPUT);
servo.attach(SERVOPIN);
```

Stepper Motor

Stepper motors are also popular
 Motor advances in discrete steps
 Input pulses indicate when to advance

- Example: Pololu 1207 Stepper Motor
 - 1.8° steps (200 steps/revolution)
 - 280 mA @ 7.4 V
 - 9 oz-in holding torque
 - Needs H-Bridge driver
 - Ground C and D
 - Alternate pulses to A and B



www.pololu.com

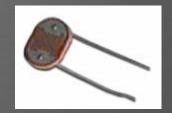
Phototransistor

- Converts light to electrical current
- Vishay BPW77NA NPN Phototransistor
 Dark current: 1 100 nA
 - Angle of half sensitivity: ±10°

jameco.com

Phototransistor Circuit

- Leave base terminal unconnected
- V_{out} = 5 I_{photo} × 330 kΩ
 In dark, V_{out} ≈ 5 V
 For I_{photo} > 15 μA, V_{out} drops to ~o


Large resistor gives sensitivity to weak light

Other Light Sensors

Photodiodes

- Similar to phototransistors
- Lower sensitivity
- Cadmium Sulfide (CDS) Cell
 - Resistance changes with light
 - From > 1 MΩ in dark to 200 Ω in full light
 - Slow response time

goldmine-elec-products.com

Sensor Read Code

```
#define PHOTO TRANS 19
```

```
void setup()
{
```

```
Serial.begin(9600);
```

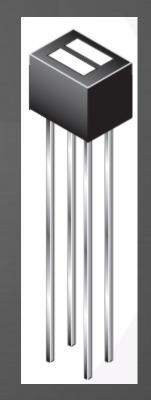
```
// configure sensors
pinMode(PHOTO_TRANS, INPUT);
```

```
void loop()
{
    int sensor;
```

}

}

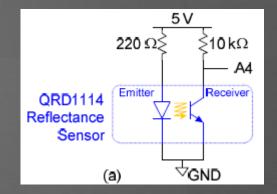
```
// test sensors
sensor = analogRead(PHOTO_TRANS-14); // analogRead uses analog port #
Serial.print("Reflectance sensor: "); Serial.println(sensor);
delay(500);
```


Sensor Averaging

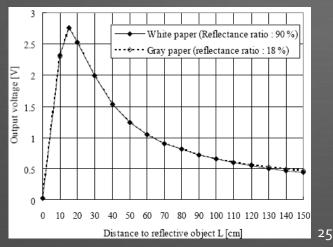
- Sensors are subject to noise
- Average multiple readings for more stable results

Reflectance Sensor

Infrared LED and phototransistor pair


- LED illuminates surface
- Phototransistor receives reflected light
- Daylight filter on sensor reduces interference
- Sensitive to distance, color, reflectivity
- Fairchild QRD1114 Reflectance Sensor
 - ~20 mA LED current
 - 1.7 V LED ON voltage
 - 940 nm wavelength (near infrared)

fairchild.com


Reflectance Sensor Circuit

- $I_{LED} = (5-1.7 \text{ V}) / 220 \Omega = 15 \text{ mA}$
- $V_{out} = 5 I_{photo} \times 10 \ k\Omega$
- Resistor was selected to give a good range of response

IR Distance Sensor

- Sharp GP2YoA21YKoF
- Range of 8 to 6o"
- Triangulates with linear CCD array
- Three terminals: 5V, GND, Signal

Ultrasonic Distance Sensor

- Measure flight time of ultrasonic pulse
 - Less sensitive to ambient light
 - More precise
 - More expensive
- Example: LV-MaxSonar-EZ
 - 42 KHz ultrasonic beam
 - Range of 254" with resolution of 1"
 - 2.5 5.5 V operation
 - Analog voltage output

maxbotix.com

Switches

Switches are useful for proximity detection

Three terminals

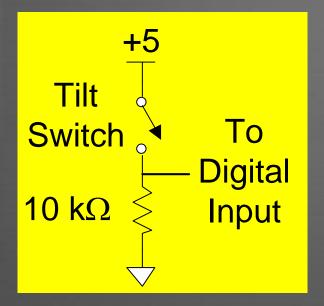
- COM: Common
- NO: Normally Open
- NC: Normally Closed
- Mounting issues
 - Good supporting surface
 - Gang 2 or more with plate between

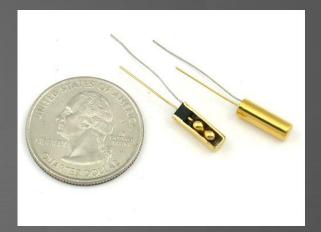


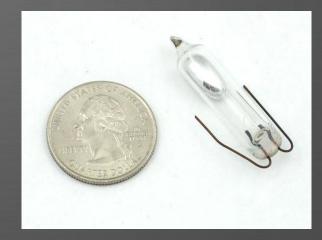
sparkfun.com

Flex Sensors

- Resistance changes with flex
- Example: Spectra Symbol Flex
 - 4.5" length
 - 10 K Ω ± 30% when flat
 - 60-110 KΩ when bent
- Sample Circuit
 - V_{out} = 2.5 V when flat
 Increases when bent




sparkfun.com


Tilt Switches

Mercury or Ball

• Warn if your bot is about to topple!

Navigation Sensors

Track your position

- Watch for operating voltage and analog/digital interface
- Some of these sensors are expensive!
- Sparkfun
 - HMC6352 Digital Compass
 - MLX90609 Single Axis Gyroscope
 - ITG-3200 Triple Axis Gyroscope
 - ADXL322 Dual Axis Accelerometer
 - Inertial Measurement Units

Mounting Sensors & Actuators

Secure mounting is half the challenge

- Poorly mounted sensors will fail at an inopportune time
- Tangles of cables will catch on obstructions and pull loose
- High center of gravity leads bots to topple in collisions

Consider building a custom mount

- Machine shop
- **3D printer**

• Use Breadboard to test electronics

Solder final electronics onto front of Mudduino for security

Adhesives

Cynoacrylate (CA) Glue (aka Super Glue)

- Fast drying, good for bonding plastic
- Low shear strength
- Don't bond your fingers wear gloves
- Hot Glue
- Electrical Tape
 - Insulator, low strength
- Gaffer's Tape
 - Like duct tape, but stronger and removes cleanly

Suppliers

- Engineering Stockroom
- Hobbyist
 - Pegasus Hobbies
 - 5515 Moreno St., Montclair, an easy bike ride from campus
 - Sparkfun
 - Pololu
 - Jameco
 - All Electronics, Futurlec, Inventables, Goldmine Electronics, …
- Professional
 - DigiKey (very wide selection, fewer hobby parts, higher cost)

Summary

• On-Board Actuators:

- Twin DC Motors + Gearbox
- Servo Motor

• On-Board Sensors:

- Phototransistor (A5)
- Reflectance Sensor (A4)
- Distance Sensor (Ao)

• In E11 Stock:

- Snap Action Switch
- Flex Sensors

Boundless possibilities!