

E11 Lecture 1: The Big Picture & Digital Systems

Profs. David Money Harris & Sarah Harris Fall 2011

Outline

- Course Goals
- Syllabus
- From Zero to One
- Boolean Logic
- Number Systems

Course Goals

- Hands-on interdisciplinary introduction to what engineers and computer scientists do
 - Mechanical Engineering
 - Electrical Engineering
 - Computer Engineering
 - Computer Science
 - Design
 - Controls

Course Goals (Part 2)

- Give students a tastes of what engineers and computer scientists do to help make informed major decisions Provide practical skills including:
 - Machine shop
 - 3D CAD and printing
 - Soldering
 - C programming
 - Sensors & actuators
 - Analog & digital interfacing
 - Modeling
 - Embedded control systems

Course Goals (Part 3)

Whet students' appetite to learn more advanced topics

Develop skills:

- Design build test debug
- Teamwork
- Presentations
- Technical writing
- Just plain fun!

www.clker.com

The Teaching Team

Profs. David Money Harris & Sarah Harris

- Unusual course with a big component of peer teaching
 - Three upper-class lab section instructors:
 - Eric Zhang
 - Greg Fong
 - Brad Perfect & Katie Vinnedge
 - Six sophomore lab assistants who took the course Fall 10
 - Becca Thomas & Vijay Ramakrishnan
 - Tyler Robinson
 - Alistair Dobke
 - Stephen Pinto
 - Tutors
 - Jeremy Usatine & Josh Vasquez

Schedule

Week	Tue	Thurs	Lab	Problem Set (Due Tuesdays in class)
0: 8/29	Big Picture, Digital Systems	C Programming I	0: Shop safety briefing	
1:9/5	Arduino Board	C Programming II	1: Arduino Board	
2:9/12	Design Representation	C Programming III	2: 3D CAD & Printing	Programming 1: Welcome to Arduino
3: 9/19	Gold Codes	C Programming IV	3: Machine Shop	Programming 2: Music & Memory Game
4: 9/26	Analog Circuits	Analog Circuit Analysis	4: Robot Assembly	Programming 3: Gold Code Generation
5: 10/3	Diodes & Transistors	DEs, Capacitors & Inductors	5: Motors & Sensors	Hardware 4: Volts & Amps & Ohms, Oh My!
6: 10/10	Feedback Control	Motors	6: Line-Following Robot	Programming 5: Reaction Timer & Light Tag
7: 10/17	Fall Break	Line Following Race	Break week: no lab	
8: 10/24	Game Kickoff; Team Dynamics	Mechanical Performance	Robot Design I	Programming 6: Gold Code Detection
9: 10/31	Robot Navigation	Debugging	Robot Design II	Hardware 7: 1st Order Circuits & Transistors
10: 11/7	Scrimmage	Batteries	Robot Design III	Hardware 8: Motors
11: 11/14	Guest Lecture	Robotics Show & Tell	Robot Design IV	
12: 11/21	Capture the Flag Game (5:30 pm in Galileo)	Thanksgiving: no class	No lab	
13: 11/28	Technical Writing	Presentation Skills	Technical Writing	
14: 12/5	Peer Editing	Engineering Outlook	Presentations	Project Report (due Thursday 12/8)

Grading

Pass/fail. To Pass:

- Regularly attend class and labs
- Complete all but one of the weekly labs
- Complete all but one of the homework assignments
- Deploy an operational autonomous vehicle to play Capture the Flag
- Make a presentation about the vehicle
- Complete a final report documenting your vehicle

Collaboration Policy

Labs 1-5:

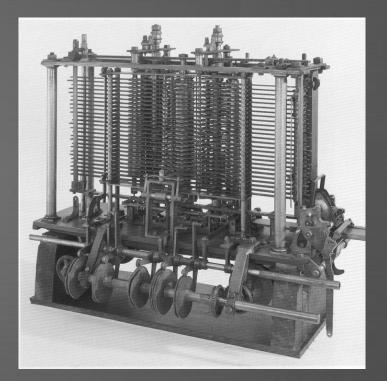
- Done on your own
- You are welcome consult your instructors and classmates
- Lab 6 & Final Project:
 - Done with a partner

Problem Sets:

- Done on your own or with a partner
- Both of you should be engaged in all aspects
- OK to discuss with other students after making an effort yourself

From Zero to One

We'll be building digital systems
Simple building blocks: o and 1
o = FALSE
1 = TRUE
Robustly assemble them into complex systems
(Much more on this in E85 and CS6o and E155)

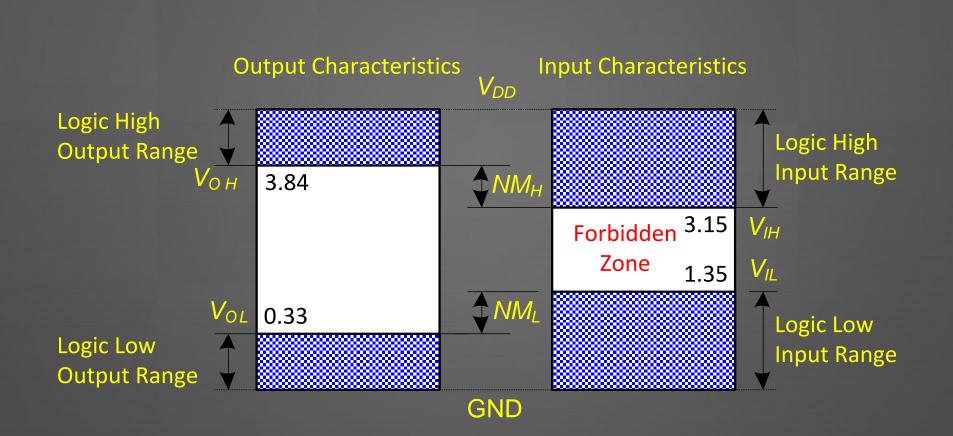

Digital Abstraction

o and 1 could be represented by any physical quantity

- voltage
- current
- position of a mass
- electron spin
- reflectivity
- magnetic polarity
- water flow
- Most of these properties are continuous
- Only consider a discrete subset of the values

The Analytical Engine

- Designed by Charles Babbage from 1834 – 1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before completion



High and Low Voltages

Most digital systems today use voltage to process o and 1
 o = low voltage
 1 = high voltage

- Power supply voltage: VDD (or VCC)
 - Formerly 5 V standard
 - Decreased toward 3.3, 2.5, 1.8, 1.2, 1.0, ...
 - We'll use VDD = 5 V
 - Ground = o V

Logic Levels

Bits & Binary Numbers

- A o or 1 represents one of two states
 Hence, it is called a *bi*nary digit, or bit
- N bits can represent one of states
- Write as binary numbers
 - 000...000 = 0
 - **111...111** = 2^N-1
- Leftmost bit is called most significant bit (weight = 2^{N-1})
- Rightmost bit is called least significant bit (weight = 1)

Number Systems

Decimal Numbers

1's column 10's column 100's column 1000's columr

 $5374_{10} = 5 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$

five	three	seven	four
thousands	hundreds	tens	ones

Binary Numbers

1's column 2's column 4's column 8's column

eight

 $1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} = 13_{10}$

two

one

four

Powers of 2

More Powers of 2

• 2¹⁰ = 1 kilo

≈ **1000 (1024)**

- 2²⁰ = 1 mega
- 2³⁰ = 1 giga

[≈] 1 million (1,048,576)
 <u>≈</u> 1 billion (1,073,741,824)

24° = 1 tera

• 2⁵⁰ = 1 peta

- ≈ 1 trillion
- ≈ 1 quadrillion

Number Conversion

Decimal to binary conversion:

- Convert 10011₂ to decimal

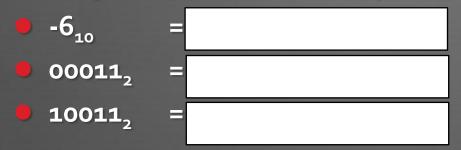
Decimal to binary conversion:

Convert 47₁₀ to binary

Addition

11 ← carries 3734 + 5168 8902

11 ← carries 1011 + 0011 1110

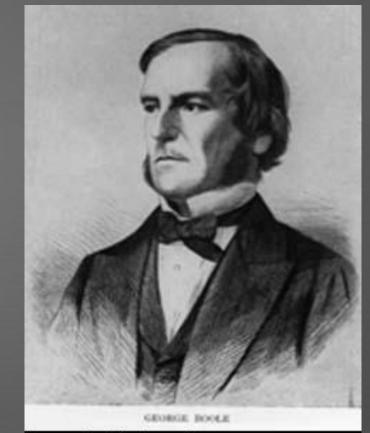

Addition Examples

1001 + 0101 1011 + 0110

Signed Numbers

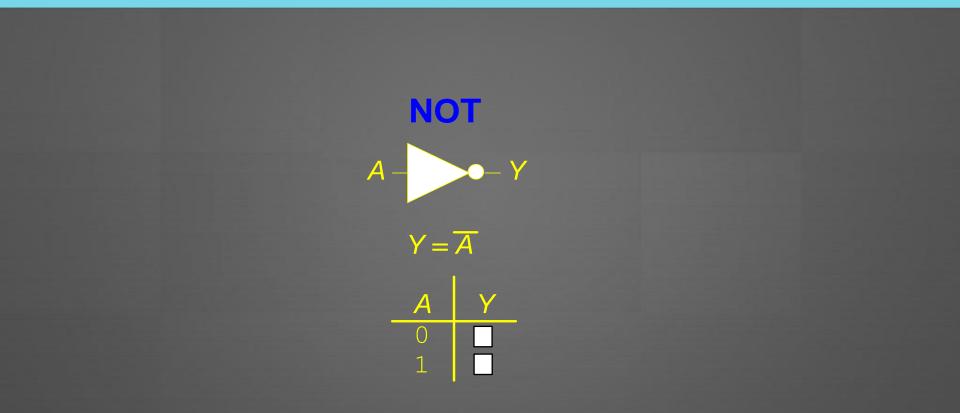
How could we represent negative numbers in binary?
 "Two's complement" number system
 Most significant bit has a weight of -2^{N-1}

Examples: 5-bit two's complement numbers

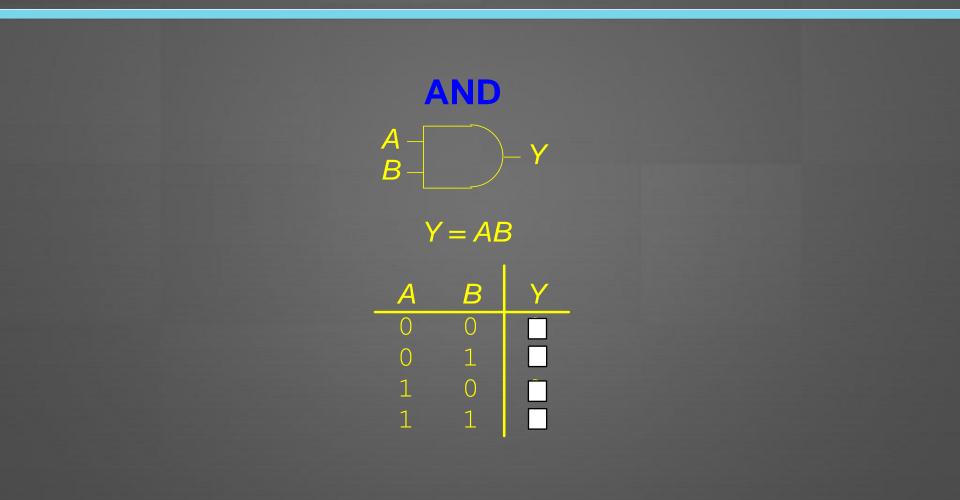

Boolean Logic

 Digital systems operate on o's and 1's to produce more o's and 1's

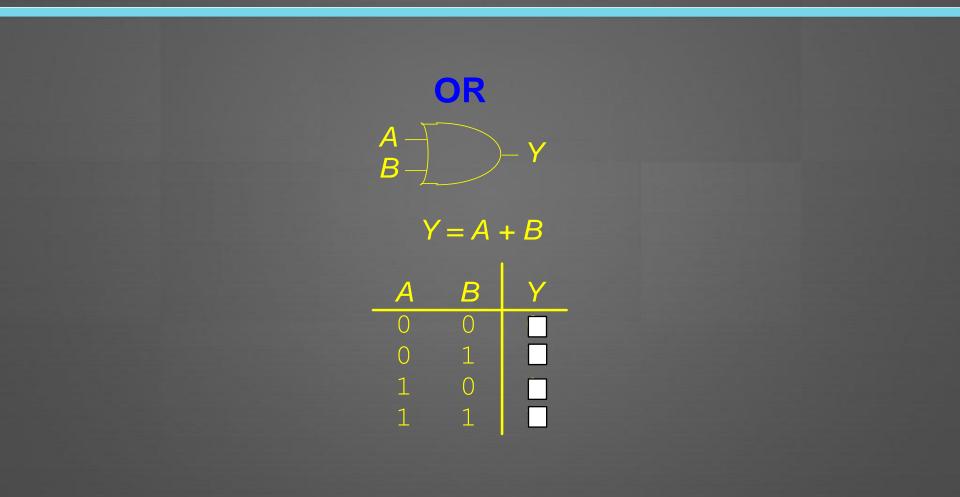
Called Boolean Logic

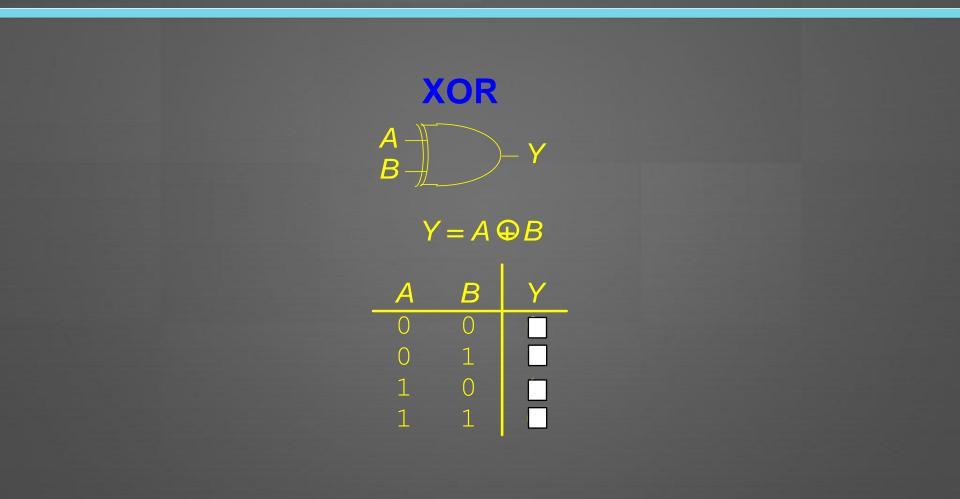

Charles Boole 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.



Scanned at the American Institute of Physics


NOT Gate


AND Gate

OR Gate

XOR Gate

