

E11 Lecture 1: The Big Picture \& Digital Systems

Profs. David Money Harris \& Sarah Harris
Fall 2011

Outline

Course Goals

- Syllabus
- From Zeroto One
- Boolean Logic
- Number Systems

Course Goals

- Hands-on interdisciplinary introduction to what engineers and computer scientists do

Mechanical Engineering
Electrical Engineering
Computer Engineering
Computer Science
Design
Controls

Course Goals (Part 2)

- Give students a tastes of what engineers and computer scientists do to help make informed major decisions Provide practical skills including:

Machine shop
3D CAD and printing
Soldering
C programming
Sensors \& actuators
Analog \& digital interfacing
Modeling
Embedded control systems

Course Goals (Part 3)

Whet students' appetite to learn more advanced topics

- Develop skills:

Design - build - test - debug
Teamwork
Presentations
Technical writing
Just plain fun!

www.clker.com

The Teaching Team

- Profs. David Money Harris \& Sarah Harris

Unusual course with a big component of peer teaching Three upper-class lab section instructors:
O Eric Zhang

- Greg Fong
- Brad Perfect \& Katie Vinnedge

Six sophomore lab assistants who took the course Fall 10

- Becca Thomas \& Vijay Ramakrishnan
- Tyler Robinson
- Alistair Dobke
- Stephen Pinto

Tutors

- Jeremy Usatine \& Josh Vasquez

Schedule

Week	Tue	Thurs	Lab	Problem Set (Due Tuesdays in class)
$0: 8 / 29$	Big Picture, Digital Systems	C Programming I	0: Shop safety briefing	
$1: 9 / 5$	Arduino Board	C Programming II	1:Arduino Board	
$2: 9 / 12$	Design Representation	C Programmin III	2:3D CAD \& Printing	Programming 1: Welcome to Arduino
$3: 9 / 19$	Gold Codes	C Programming IV	3: Machine Shop	Programming 2: Music \& Memory Game
$4: 9 / 26$	Analog Circuits	Analog Circuit Analysis	4: Robot Assembly	Programming 3: Gold Code Generation
$5: 10 / 3$	Diodes \& Transistors	DEs, Capacitors \& Inductors	5: Motors \& Sensors	Hardware 4: Volts \& Amps \& Ohms, Oh My!
$6: 10 / 10$	Feedback Control	Motors	6: Line-Following Robot	Programming 5: Reaction Timer \& Light Tag
$7: 10 / 17$	Fall Break	Line Following Race	Break week: no lab	
$8: 10 / 24$	Game Kickoff; Team Dynamics	Mechanical Performance	Robot Design I	Programming 6: Gold Code Detection
$9: 10 / 31$	Robot Navigation	Debugging	Robot Design II	Hardware 7: $1^{\text {It Order Circuits \& Transistors }}$
$10: 11 / 7$	Scrimmage	Batteries	Robot Design III	Hardware 8: Motors
$11: 11 / 14$	Guest Lecture	Robotics Show \& Tell	Robot Design IV	
$12: 11 / 21$	Capture the Flag Game (5:30 pm in Galileo)	Thanksgiving: no class	No lab	
$13: 11 / 28$	Technical Writing	Presentation Skills	Technical Writing	
$14: 12 / 5$	Peer Editing	Engineering Outlook	Presentations	Project Report (due Thursday 12/8)

Grading

- Pass/fail. To Pass:

Regularly attend class and labs
Complete all but one of the weekly labs
Complete all but one of the homework assignments
Deploy an operational autonomous vehicle to play Capture the Flag
Make a presentation about the vehicle
Complete a final report documenting your vehicle

Collaboration Policy

- Labs 1-5:

Done on your own
You are welcome consult your instructors and classmates

- Lab 6 \& Final Project:

Done with a partner

- Problem Sets:

Done on your own or with a partner
Both of you should be engaged in all aspects
OK to discuss with other students after making an effort yourself

From Zero to One

We'll be building digital systems
Simple building blocks: 0 and 1

- o = FALSE
- 1 =TRUE

Robustly assemble them into complex systems
(Much more on this in E85 and CS60 and E155)

Digital Abstraction

0 and 1 could be represented by any physical quantity voltage current position of a mass
electron spin
reflectivity
magnetic polarity
water flow

- Most of these properties are continuous
- Only consider a discrete subset of the values

The Analytical Engine

- Designed by Charles Babbage from 1834-1871
- Considered to be the first digital computer
- Built from mechanical gears, where each gear represented a discrete value (0-9)
- Babbage died before completion

High and Low Voltages

Most digital systems today use voltage to process 0 and 1
0 = low voltage
1 = high voltage

- Power supply voltage: VDD (or VCC)

Formerly 5 V standard
Decreased toward 3.3, 2.5, 1.8, 1.2, 1.0, ...
We'll use VDD $=5 \mathrm{~V}$
Ground = o V

Logic Levels

Bits \& Binary Numbers

A 0 or 1 represents one of two states
Hence, it is called a binary digit, or bit
N bits can represent one of \square states
Write as binary numbers

$$
\begin{aligned}
& 000 . . .000=0 \\
& 111_{1} . .111=2^{N_{-1}}
\end{aligned}
$$

- Leftmost bit is called most significant bit (weight $=2^{\mathrm{N}-1}$)
- Rightmost bit is called least significant bit (weight = 1)

Number Systems

Decimal Numbers

$$
5374_{10}=\underset{\substack{\text { five } \\ \text { thousands }}}{5 \times 0^{3}}+\underset{\substack{\text { three } \\ \text { hundreds }}}{3 \times 10^{2}}+\underset{\substack{\text { seven } \\ \text { tens }}}{7 \times 10^{1}}+\underset{\substack{\text { four } \\ \text { ones }}}{4 \times 10^{0}}
$$

Binary Numbers

$$
1101_{2}=\underset{\substack{\text { one } \\ \text { eight }}}{1 \times 2^{3}}+\underset{\text { one }}{\text { four }} \underset{\text { for }}{1 \times 2^{2}}+\underset{\substack{\text { no } \\ \text { two }}}{0 \times 2^{1}}+\underset{\text { one }}{1 \times 2^{0}}=13_{10}
$$

Powers of 2

$$
\text { - } 2^{2}=\square
$$

$$
\text { - } 2^{3}=\square
$$

$$
\text { - } 2^{4}=\square
$$

$$
\text { - } 2^{5}=\square
$$

$$
\text { - } 2^{6}=\square
$$

$$
\text { - } 2^{7}=\square
$$

- $2^{8}=\square$
- $2^{9}=\square$
- $2^{10}=\square$
- $2^{11}=\square$
- $2^{12}=\square$
- $2^{13}=\square$
- $2^{14}=\square$
- $2^{15}=\square$

More Powers of 2

$2^{10}=1$ kilo
$2^{20}=1$ mega
$2^{30}=1$ giga
$2^{40}=1$ tera
$2^{50}=1$ peta
≈ 1000 (1024)
≈ 1 million $(1,048,576)$
≈ 1 billion (1,073,741,824)
≈ 1 trillion
₹ 1 quadrillion

Number Conversion

Decimal to binary conversion:

Convert 10011 ${ }_{2}$ to decimal

Decimal to binary conversion:
Convert 47_{10} to binary

Addition

Decimal
$11 \leftarrow$ carries
3734
$\begin{array}{r}3168 \\ \hline 8902\end{array}$
Binary

> | 11 |
| :---: |
| 1011 |
| $+\quad 0011$ |
| 1110 |

Addition Examples

Signed Numbers

- How could we represent negative numbers in binary? "Two's complement" number system
Most significant bit has a weight of $-2^{\mathrm{N}-1}$
- Examples: 5-bit two's complement numbers

00011_{2} 10011_{2}

Boolean Logic

Digital systems operate on o's and 1's to produce more o's and 1 's

Called Boolean Logic

Charles Boole 1815-1864

- Born to working class parents
- Taught himself mathematics and joined the faculty of Queen's College in Ireland.
- Wrote An Investigation of the Laws of Thought (1854)
- Introduced binary variables
- Introduced the three fundamental logic operations: AND, OR, and NOT.

Scanned at the American Institute of Physics

NOT Gate

NOT

 $$
Y=\bar{A}
$$
 $$
\begin{array}{c|c} A & Y \\ \hline 0 & \square \\ 1 & \square \end{array}
$$

AND Gate

AND

\[

\]

OR Gate

OR

\[

\]

XOR Gate

$$
\begin{aligned}
& \text { XOR } \\
& Y=A \oplus B \\
& \begin{array}{cc|c}
A & B & Y \\
\hline 0 & 0 & \square \\
0 & 1 & \square \\
1 & 0 & \square \\
1 & 1 & \square
\end{array}
\end{aligned}
$$

