
1

E11: Autonomous

Vehicles
Fall 2010
Harris & Lape with Keeter & Ong

Lab 6: Motors and Sensors

Introduction

By this point, you should have an assembled robot and Mudduino to power it. Let’s get
things moving!

Getting started with motors

It’s important to give your robot a way of moving
around. Since driving will show up in many different
assignments, we recommend making a separate file to
contain motor control code, so that you can copy the
file into each new sketch without much trouble. To
make a separate file, use the New Tab button near the
upper right corner of the Arduino IDE.

Name this new file motor_xx, where xx are your initials, and save the entire sketch with
the name lab6_xx. In motor_xx, you will write functions that allow the robot to move
around. These functions will activate the H-bridge to bring power to your motors; once
they are written you’ll be able to ignore the H-bridge’s inner workings.

Motor control pins

The following schematic shows the Mudduino motor control pins:

2

It is a good idea to declare these pins using #define statements at the top of your code
(e.g. #define LPLUS 13).

You will discover that the Arduino bootloader toggles some pins connected to the motors
every time you download code or press the reset button. The right motor is likely to spin
for a while, and there is nothing your program can do to prevent this. Hold on to your
robot so it doesn’t scoot away!

Basic driving

In your motor_xx file, write the following set of functions:

• void initMotors(): Declare relevant pins as outputs, make sure that robot is stopped
• void halt(): Stop all motors
• void forward(): Drive forward indefinitely
• void turnL(): Turn left indefinitely
• void turnR(): Turn right indefinitely
• void backward(): Drive backwards indefinitely

Note that indefinitely does not require an infinite loop in your program. If you write the
appropriate values to the pins, the robot will keep doing the same thing until the values
on those pins change.

Try out each function after you’ve written it, to make sure it works. The lab should be
filled with the joyous noises of robots running into walls and trying to jump off tables!

Timed driving

One common task is to drive for a certain amount of time, then move on to something
else. Using the power of overloading, you can write two distinct functions: void
forward(), and void forward(int time). Depending on whether you invoke forward() or
forward(SOME NUMBER), the correct function will be called. Write alternate
versions of the earlier functions that take a single argument time. These functions should
do the same task as before, but only for the specified amount of time (in units of
milliseconds). They should then stop the robot.

Hint: These functions can be written in three lines each if you use what you’ve already
written!

Driving with variable power

Some times, you might want your robot to slow down. To make your robot go slower,
we will use pulse-width modulation on the enable lines of the H-bridge. Pulse-width
modulation is a technique to imitate an analog value with a digital signal. Instead of
being consistantly high, a PWM signal is high only some fraction of the time. A PWM
signal is used with the command analogWrite(pin, level). Level can be anywhere from
0 (always off) to 255 (always on). Power levels below about 50 may not provide enough
torque to move your bot.

3

Add a global variable named int powerLevel, with an initial value of 255. Now, modify
your initial set of driving functions to use analogWrite instead of digitalWrite when
enabling the H-bridge. Finally, add another function named setPowerLevel(int pl) that
redefines the global variable.

Now, to drive slowly, you can use:

setPowerLevel(128); // set half power
forward(10); // drive forwards for 10 seconds

Congratulations! This completes the standard set of driving functions. You will be using
this file often, so now would be a good time to test it out. Try turning left and right
slowly, as well as reversing. Which leads us to…

Square driving challenge

Right now, your robot is operating with open-loop control. This means it is operating
with no feedback from the sensors. Your robot is essentially blind, following a pre-set list
of instructions. This type of control is simple, but limits the precision of the robot’s
maneuvers.

There is a square drawn in electrical tape on the floor of the lab. Try to perfect your turn
timing to make your robot drive around the square as quickly as possible. This is a good
time to experiment with timed turns, to get the best 90 degree turn you can. If your robot
doesn’t drive quite straight, you may need a different turn. You should aim to get the
robot to park as close to its starting location as possible. Don’t spend too much time on
this problem, though; save some time to experiment with your sensors, and come back to
this part if you have time at the end.

Getting started with sensors

The sensors used in this class are primarily analog: instead of a digital on/off value, they
give a voltage that is somehow related to the intensity of the measurement. The
relationship could be linear, exponential, or even inverted. That’s why it’s important to
get to know your sensors. When you’re first using a sensor, write a simple program that
prints the sensor’s reading to the serial port. Then, expose the sensor to a range of
stimuli, so that you know what its response looks like across the board.

In the last lab, you soldered together your sensors but did not yet test them. Now it is
time to find if you assembled them correctly. Write a short Arduino program to read the
reflectance sensor on A5 and the phototransistor on A4 and to print the results to the
console. The reflectance sensor should give significantly different results when placed
over different color surfaces. The phototransistor should give significantly different
results when pointed at a light source. Look at the results and convince yourself that the
sensors are wired correctly. If you have trouble, check the voltages with a voltmeter and
look for shorts between pins.

4

Phototransistor

The phototransistor on the front of the robot detects light. When it sees a bright light,
you should detect a low value on the corresponding analog pin.

Write code that causes the robot to turn in a circle until it sees a bright light, then drive
forward. Put your code in a new sketch with a name of your choosing. Use the Sketch ->
Add File command to add your motor code from the previous part.

The instructor will set up a large lamp on the floor. If your code works, the robot will
attack the lamp.

Photo from Jameco Electronics

Reflectance sensor

The IR reflectance sensor can tell you whether the ground underneath it is dark or light.
It has two halves: one side emits infrared light, and the other detects the IR light
bouncing back. The challenge for this sensor is simply to stop on a dark line. Drive
forwards until the robot sees a dark line, then stop immediately.

Photo from DigiKey

This technique can also be used to prevent the robot from jumping off tables! Since the
floor is far away, very little light is reflected back to the sensor. Write a program to
constantly polling the reflectance sensor while the robot drives forward. If the reading
ever drops too low, the robot should halt immediately and play a song on the speaker to
indicate what happened. Test this code out and see if your robot can stop fast enough to
avoid taking the plunge off the table!

Congratulations!

You should now be familiar with the core set of sensors. The possibilities are endless!

