
1 	

	

	

E11: Autonomous Vehicles
Fall 2014

Lab 5: Motors and Sensors

	
By this point, you should have an assembled robot and Mudduino to power it. Let’s get
things moving! In this lab, you will write code to test your motors and sensors. This lab
has three parts:
	
1. Controlling the DC motors (connected to the wheels)
	
2. Controlling the servo motor (connected to the distance sensor)

3. Testing the sensors (phototransistor, reflectance sensor, and distance sensor)

Create a sketch called lab5_xx (where xx are your initials). You will have three
additional tabs in the sketch called: motors_xx.ino, servotest.ino, and sensors.ino,
corresponding to each of the three sections above.
	
1. Controlling the DC Motors
	

It’s important to give your robot a way of moving
around. Since driving will show up in many different
assignments, we recommend making a separate file to
contain motor control code, so that you can copy the
file into each new sketch without much trouble. In your
lab5_xx sketch, add a separate file using the New Tab
button near the upper right corner of the Arduino IDE.
	
	
	

Figure 1. Adding a file to the
sketch using New Tab

	
Name this new file motor_xx.ino, where xx are your initials. In motor_xx, you will
write functions that allow the robot to move around. These functions will activate the H-
bridge to bring power to your motors; once they are written, you’ll be able to ignore the
H-bridge’s inner workings.

2 	

Motor Control Pins
	
Figure 2 shows the Mudduino motor control pins coming from the H-Bridge.
	

	

Figure 2. H-bridge connections
	
It is a good idea to declare these pins using #define statements at the top of your code (e.g.
#define LPLUS 9). Be sure to define LPLUS, LMINUS, RPLUS, RMINUS, LEN, and
REN. A copy of the Mudduino pinout is included on the last page of the lab for your
convenience.
	
The motor power can come from either the battery or the 5-volt regulator, as selected by
the middle power switch. The battery provides at least 7.2 V, so it will spin your motors
faster and is recommended. However, if your battery is not connected, you can still test
the motors off USB power.
	
	

Basic Driving
	

	
In your motor_xx.ino file, write the following set of functions:
	
• void motorEn(): Enable motors
• void initMotors(): Declare relevant pins as outputs, make sure the robot is stopped
• void halt(): Stop all motors
• void forward(): Drive forward indefinitely
• void backward(): Drive backwards indefinitely
• void turnL(): Turn left indefinitely
• void turnR(): Turn right indefinitely
	
Call the motorEn() function at the beginning of each function except initMotors(). If a
motor spins in the opposite direction from what you intend in your code, simply switch
the wires to the MR+/- or ML+/- header pins.

3 	

Note that indefinitely does not require an infinite loop in your program. If you write the
appropriate values to the pins, the robot will keep doing the same thing until the values on
those pins change.
	
Try out each function after you’ve written it to make sure it works. The lab should be
filled with the joyous noises of robots running into walls and trying to jump off tables!
	
Warning: turn the motors off (switch in middle position) before uploading a sketch to
the Mudduino.
	
	

2. Controlling the Servo Motor
	
The servo motor rotates from 0 to 180 degrees. 0 degrees is to the right; 90 is straight
forward, and 180 is to the left. The servo is controlled by a pulse-width modulated
(PWM) signal from the Mudduino. The Mudduino has an optional library to produce
such PWM signals.
	
The code in Figure 3 demonstrates how to use the servo. It #includes the servo.h
library with the servo functions. It also declares servo as a global variable to record
information about the state of the servo. It then uses servo.attach(10) to tell the
Mudduino that the servo is connected to pin D10 and servo.write(90) to drive the
servo motor to 90 degrees (straight forward).
	
// servotest.ino
// David_Harris@hmc.edu 1 October 2011
	
#include <Servo.h>
	
// pins
#define SERVOPIN 10
	
// Global variable for the servo information
Servo servo;
	
void testServo()
{

initServo();
servo.write(90); delay(2000);

}
	
void initServo()
{

pinMode(SERVOPIN, OUTPUT);
servo.attach(SERVOPIN);

}
	
Figure 3. Example servo code

4 	

Do not turn your servo by hand, especially when power is applied; you may damage it.
Before you run the code, visually inspect that the servo will be able to turn to the left and
right without bumping against wires.
	
Each time you turn on the robot, the servo may twitch and move to a new position before
your servo.write command is executed. However, servo.write should point it in
the desired direction. Again, avoid turning the servo by hand.
	
Test your servo with the sample code:Add another tab called servotest.ino and copy the
code from Figure 3 into that tab. Then call testServo() in the lab5_xx.ino setup() function.
Comment out tests from previous parts of the lab as needed. Be sure the distance sensor is
pointing straight forward when at 90 degrees. If necessary, loosen the pan-head screw and
adjust the bracket to point forward.
	
Modify the testServo() function to test your servo by positioning it at 0 o, 45 o, 90 o, 135 o,
and 180o. Give a 2 second pause between each position.
	
If the servo doesn’t turn as expected and the voltage regulator on the Mudduino board
gets very hot, it is possible that you have damaged the servo and need to replace it.
	
	

3. Testing the Sensors
	
In this section, you will test and use each of the three sensors on the Mudduino: the
phototransistor, the reflectance sensor, and the distance sensor. The sensors used in this
class are primarily analog: instead of a digital on/off value, they give a voltage that is
somehow related to the measurement. The relationship could be linear, exponential, or
even inverted. That’s why it’s important to get to know your sensors. In the last lab, you
soldered together your sensors but did not yet test them. Now it is time to find out if you
assembled them correctly.
	
To start,create a new tab in your lab5_xx sketch called sensors.ino. In that tab, write a
simple function that:
	
(1) sets up all three sensor pins as inputs,
(2) reads from the sensor pins twice per second, and
(3) prints the sensor readings to the serial port.
	
Then, expose each sensor to a range of stimuli, so that you know what its response looks
like across that range. Call your new function from the loop() function in lab5_xx.ino.
Comment out tests from previous parts of the lab as needed. To get you started, the
following lines of code set up the distance sensor for reading and read the value.

#define DISTSENSOR 14

void testSensors() {
pinMode(DISTSENSOR, INPUT);
dist = analogRead(DISTSENSOR-14);
}

5 	

	

The distance sensor should vary as you move your hand in front of it. The reflectance
sensor should give significantly different results when placed over different color surfaces
such as the lab bench and a piece of white paper. The phototransistor should give
significantly different results when pointed at a light source. Look at the results and
convince yourself that the sensors are operating correctly. If you find trouble, check the
voltages with a voltmeter and look for shorts between pins.
	
	

Phototransistor
	
The phototransistor on the front of the robot detects light. When it sees a bright light, you
should detect a low value on the corresponding analog pin. Write a new function in
sensors.ino for testing the phototransistor. This function should cause the robot to turn in a
circle until it sees a bright light, at which point it drives forward. Call your function in
setup() to test it.
	
The instructor will set up a large lamp on the floor. If your code works, the robot will
attack the lamp.
	

Phototransistor (image from Jameco Electronics)

	
	

Reflectance Sensor
	
The IR reflectance sensor can tell you whether the ground underneath it is dark or light. It
has two halves: one side emits infrared light, and the other detects the IR light bouncing
back. Now write a new function in sensors.ino that simply stops on a line of black tape.
The robot should drive forward until it sees a dark line, then stop immediately. Call this
function from setup() in lab5_xx.ino to test it.
	

Reflectance Sensor (image from DigiKey)

	
This technique can also be used to prevent the robot from jumping off tables! Since the
floor is far away, very little light is reflected back to the sensor. Write a program to
constantly poll the reflectance sensor while the robot drives forward. If the reading ever

6 	

drops too low, the robot should halt immediately and play a song on the speaker to
indicate what happened. Test this code out and see if your robot can stop fast enough to
avoid taking the plunge off the table!
	
	

Distance Sensor
	
Calibrate the distance sensor by plotting the reading vs. the distance from your robot’s
front bumper to a wall. A yardstick is helpful. Note that the sensor has some ambiguity
when measuring very short distances. Make sure that wires or other nearby objects aren’t
contaminating your data.
	

	

Distance Sensor (image from Pololu)
	
	

Optional Topics
	
If you have time remaining, you can play with any of the following three topics:
	
• Timed driving
• Driving with variable power
• Driving in a square
	
	

Timed Driving
	
One common task is to drive for a certain amount of time, then move on to something else.
Using the power of overloading, you can write two distinct functions: void forward(), and
void forward(int time). Depending on whether you invoke forward() or
forward(SOME NUMBER), the correct function will be called. In motors_xx.ino, write
additional versions of the earlier functions that take a single argument time. These
functions should do the same task as before, but only for the specified amount of time (in
units of milliseconds). They should then stop the robot.
	
Hint: These functions can be written in three lines each if you use what you’ve already
written!

7 	

Driving with Variable Power
	
Sometimes, you might want your robot to slow down. To make your robot go slower, we
will use pulse-width modulation on the enable lines of the H-bridge. Pulse-width
modulation (PWM) is a technique to imitate an analog value with a digital signal. Instead
of being consistently high, a PWM signal is high only some fraction of the time. A PWM
signal is used with the command analogWrite(pin, level). Level can be anywhere from
0 (always off) to 255 (always on), and the pin number is the digital pin number. Power
levels below about 50 may not provide enough torque to move your bot.
	
In your motors_xx.ino file, add a global variable named int powerLevel, with an initial
value of 255. Now, modify your initial set of driving functions to use analogWrite
instead of digitalWrite when enabling the H-bridge (in the motorEn() function). Finally,
add another function named setPowerLevel(int pl) that sets the global variable
powerLevel to pl (the input argument).
	
Now, to drive slowly, you can use:
	

setPowerLevel(128); // set half power
forward(10); // drive forwards for 10 seconds

Hint: It may be helpful to create a function that takes signed power levels (positive or
negative) and moves forward, backward or turns left, right depending on those values.

Congratulations! This completes the standard set of driving functions. You will be using
this file often, so now would be a good time to test it out. Try turning left and right
slowly, as well as reversing. Which leads us to…
	
	

Square Driving Challenge
	

	
Right now, your robot is operating with open-loop control. This means it is operating with
no feedback from the sensors. Your robot is essentially blind, following a pre-set list of
instructions. This type of control is simple, but limits the precision of the robot’s
maneuvers.
	
There is a dark 4” square pattern in the hallway tiles just outside the lab. Try to perfect
your turn timing to make your robot drive around the square as quickly as possible. This is
a good time to experiment with timed turns, to get the best 90 degree turn you can. If your
robot doesn’t drive quite straight, you may need a different turn. You should aim to get the
robot to park as close to its starting location as possible. This is hard, so don’t worry if you
don’t get perfect results. Remember this if you try to use open-loop control in the final
project.

8 	

Mudduino Pinout
	

Digital Pin # Analog Pin # Notes
0 	 Serial TXD – don’t use
1 	 Serial RXI – don’t use
2 	 Header D2
3 	 Team (0 = green / 1 = white) read only
4 	 Header D4, Buzzer
5 	 Header D5 / green LED / programming indicator
6 	 Left Motor Enable
7 	 Right Motor +
8 	 Left Motor -
9 	 Left Motor +
10 	 Header D10 / Servo (use servo.write)
11 	 Right Motor Enable
12 	 Right Motor -
13 	 Header D13 / red LED
14 0 Distance Sensor
15 1 Header A1
16 2 Header A2
17 3 Header A3
18 4 Header A4, Reflectance Sensor
19 5 Header A5, Phototransistor
	

