
By now, we understand the workings of logic gates and can design circuits to compute
functions of Boolean variables. However, we are still missing one very important
capability: the ability for a circuit to “remember” information. Memory elements are
crucial for most useful electronic systems. For example, if we were building a traffic light
controller, we would need to have inputs detecting when traffic was waiting at the
intersection, but we would also need to remember the current colors of the lights. As we
take the use of memory to an extreme, we encounter modern computers which use
millions and even billions of electronic, electromagnetic, and optical memory elements. In
these notes, we will begin with the simplest circuit that we can build to display memory
properties and will work our way up to more complex forms of flip-flops.

The R-S Latch

Consider the circuit in Figure 1. Unlike any circuit we have previously studied, it employs
feedback; i.e., outputs of the circuit are connected back to inputs of the cross-coupled
NOR gates. Before reading on, try to fill in the truth table below for this circuit:

R

S

Q

Q

R S Q Q
0 0
0 1
1 0
1 1

Figure 1: R-S Latch Truth Table

If you have never seen a circuit like this before, you probably had difficulty with the truth
table. When R or S are 1, the two outputs are forced to particular values. But when both
R and S are 0, what happens? In order to resolve this problem, we must introduce the
concept of state. The output Q had some state before we examined the circuit; i.e., Q was
either 0 or 1. Let us call this value X. When R and S are both 0, this circuit doesn’t

Digital Electronics

Chip Design
&

Lecture Notes IV

© 1999 David Harris

Course Notes IV: 2

change anything; the value at Q remains X. Thus, the circuit remembers this value X that
was placed at the output.

We call this circuit an “R-S Latch.” R stands for Reset; S stands for Set. Q is the output
and Q– is the complement of the output. When R is high, the output Q is reset to 0. When
S is high, the output Q is set to 1. In either case, Q– is the complement of Q. When both
R and S are high, the circuit enters an unstable state where both Q and Q– are low. As
soon as either R or S falls low, the circuit enters one of the two stable states just
described. Finally, when both R and S are low, the latch remembers the old value X last
set or reset at Q. Thus, using X to indicate the old state of Q, we can fill in the truth table.

R S Q Q

0 0
0 1
1 0
1 1

X X
1 0
0 1
0 0

The Transparent Latch

The R-S latch provides the fundamental ability to remember an old state, but it is seldom
used directly in a circuit because controlling R and S independently is frequently a bother.
Instead, by increasing the complexity of the latch, we can make it easier to use. This is
usually a good tradeoff; transistors are cheap and engineering effort is expensive. The first
improvement we will examine is called the transparent latch, shown in Figure 2 below:

Q

Q

D

G

D Q

QG

Transparent
Latch

Figure 2: Transparent Latch: Circuit and logic symbol

Instead of explicitly drawing the gates, we usually represent the transparent latch with a
box as shown. Let us figure out how the circuit works. When G is low, both AND gates
produce 0. Thus, the circuit retains its old state. When G is high, there are two
possibilities. If D is 1, a 1 is applied to the S input of the R-S latch, setting Q to 1. If D is
0, a 1 is applied to the R input of the R-S latch, clearing Q to 0. In other words, when G
is high, Q gets the value at D. In no case do we have to deal with the unstable state of
both R and S being 1.

Course Notes IV: 3

We call D the data input and G the gate.1 When the gate is low, the latch retains its old
value. When the gate is high, the output follows the data input. In either case, Q– is the
complement of Q. This circuit is more useful because we can have a single bit of data to
store and another circuit generating the gate signal indicating when to record the bit. To
understand the circuit better, complete the timing diagram below:

D

CLK

time (microseconds)

time (microseconds)

time (microseconds)

V

V

V
5
0

5
0

5
0Q

time (microseconds)

V

5
0Q

The D Flip-flop

While the transparent latch is a great improvement over the R-S latch, there is yet another
improvement we like to make on our memory elements, shown in Figure 3:

1Note that this is a different use of the word gate than in the phrase “logic gate.” Here, the gate controls
whether the data input can pass into the latch.

Course Notes IV: 4

D

Q

CLK

Figure 3: Flip-Flop

Looking closely, you may realize that this circuit is really two cascaded transparent
latches, controlled by a clock input. A condensed representation and a schematic element
for the D flip-flop are shown below:

D Q

QG

Transparent
Latch

D Q

QG

Transparent
Latch

D

CLK

Q

Q

D Q

Q

Flip-Flop

Figure 4: Alternate representations for a flip-flop

Note that the triangle is used to indicate a clock input. Clocks will be used frequently in
later circuits; the triangle always indicates a clock.

Now, let us figure out how the D flip-flop operates. When the clock is low, the first
transparent latch follows the value of D and the second retains its old state. When the
clock is high, the first latch retains its old value from the time that the clock rose and the
second latch gets the value of the first latch. In effect, we are isolating the output from
the changing input. The input may change as it will, but at the moment the clock rises
from low to high, the value that is at D gets latched and comes out at the output Q. As
always, Q– is the complement of Q.

With a D flip-flop, we don’t have to worry about shaping our gate pulses to grab the value
of D only when it is valid; instead, we design circuits to that the outputs are valid at the

Course Notes IV: 5

time of a rising clock edge and latch the input at that moment. To appreciate the
difference between a transparent latch and a flip-flop, fill in the timing diagram below:

D

CLK

time (microseconds)

time (microseconds)

time (microseconds)

V

V

V
5
0

5
0

5
0Q

time (microseconds)

V

5
0Q

There are a few other species of flip-flops in common use including the J-K and T flip-
flops. They are extensions of the basic R-S latch following the same principles we have
developed with the D flip-flop.

The 7474 Dual Flip-flop

The 7474 chip contains two flip-flops with additional clear and preset functionality.
Below is a diagram showing the pinouts:

The D, clock, Q and Q– signals act as we have described earlier. The SD and CD set and
clear, respectively, the output Q, independent of the clock. Thus, they allow the chip to
act much like an R-S flip-flop when that is convenient. Note the inversion circles on those

Course Notes IV: 6

set and clear inputs. They indicate “negative logic;” i.e. they are active when low, not
high. Therefore, in normal operation of the 7474, connect the SD and CD inputs to 5 volts
to prevent inadvertently setting or clearing the output.

Memory Elements

We frequently wish to store multiple bits of data. For instance, if we were building a
circuit to perform division, we might have to store the divisor and the dividend, then
perform repeated subtractions. Each of these quantities could be a multi-bit number. To
do this, we build registers. A register is simply a collection of D flip-flops all controlled by
the same clock.

Now that we have developed the essential ability to remember a bit, we can also
understand how computer memories work. A typical static memory chip (SRAM) is built
from flip-flops. Using 8 adjacent flip-flops, one can store a single byte of information.
Larger memory arrays consist of thousands or millions of flip-flops with extra logic
circuitry called decoders and selectors that look up one bit or byte of the information at a
time.

Flip-flops, unfortunately, take up a fairly large amount of space on a chip, limiting the
amount of memory that one can efficiently place on a chip. Therefore, engineers have
developed dynamic memory (DRAM) chips. DRAMs work on the principle of storing
charge on a tiny capacitor; their charge leaks away over a period of milliseconds, so they
must be refreshed by special circuitry. However, the space required to store a single bit of
information is so small that chips today store up to 64 million bits (64 Mbits) of
information each. As each bit requires a transistor, your home PC with 128 megabytes of
memory uses more than one billion transistors in its memory. Producing such large
quantities of complex devices so cheaply is a very impressive feat of modern engineering.

