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Extending Castigliano’s Theorems
to Model the Behavior of Coupled
Systems
Extensions of the Castigliano theorems are developed in the context of modeling the
behavior of both discrete coupled linear systems and various coupled beams. It is shown
that the minimization of the displacement of a parallel system determined from Cas-
tigliano’s second theorem can be used to formally define the apportionment of loads
among the system elements, while the minimization of the load in a series system deter-
mined from Castigliano’s first theorem can be used to formally define the apportionment
of the displacement among the system elements. These extensions provide a means for
apportioning loads in coupled continuous systems, as will be shown for the cases of
coupled cantilever Timoshenko beams supporting discrete and continuous loads.
�DOI: 10.1115/1.4001716�
Introduction
The work presented herein has its roots in the development of
odels of buildings as collections of beam components that can

e used in preliminary design and for estimating dynamic behav-
or �see, for example, Refs. �1–6��. Static models of analysis often
ssume series models of behavior, wherein bending and shear de-
ections of beam deflection �or story drifts� add to form the total
eflection or drift �4�. However, while the shear and bending de-
ections of individual beam elements add in series �as in a Ti-
oshenko beam�, the aggregation of the beam components invari-

bly requires a parallel formulation because that aggregation
ypically requires that the building deflection or drift is the same
or each of its component elements, whether those elements are
ndividually in �pure� shear or bending, or a series combination of
he two. For example, the dynamic response of a building com-
rised of a shear core and a bent tube is modeled in a parallel
ombination of a Euler beam that is constrained to deflect equally
ith a companion shear beam �e.g., Refs. �6–8��. In such models,

ince the component deflections are constrained to be equal to
ach other �and thus, to the total deflection�, the bending and shear
tiffnesses add linearly, and the external load is distributed among
he individual components in proportion to each component’s
tiffness as a fraction of the total stiffness.

Now, while the apportionment of an external load among the
arallel components is easily done for discrete models, wherein
he external load is a single “concentrated” load, it is not obvious
ow that distribution can be implemented for a load that is spa-
ially distributed over the beam’s length �or a building model’s
eight�. This situation is analogous to the power of the discretiza-
ion inherent in Castigliano’s second theorem, in which the deflec-
ion under a concentrated load is easily calculated, while the de-
ection under a distributed load requires the additional

ntroduction of a phantom force �9�. In what follows below, an
xtension of Castigliano’s second theorem is proposed to calculate
oad apportionment and consequent point deflections for continu-
us models. Further, the individual or component beams that are
sed to construct building such models include elementary Euler–
ernoulli beams in bending, shear beams, and Timoshenko
eams, in which both bending and shear deflections are added in
eries.

Contributed by the Applied Mechanics of ASME for publication in the JOURNAL OF

PPLIED MECHANICS. Manuscript received September 29, 2009; final manuscript re-
eived March 11, 2010; accepted manuscript posted May 5, 2010; published online

ugust 17, 2010. Assoc. Editor: Martin Ostoja-Starzewski.

ournal of Applied Mechanics Copyright © 20
While the motivation described stems from the modeling of
high rise buildings in terms of beams, the proposed methodology
is applicable to any parallel concatenation of elements. Moreover,
a corresponding extension of Castigliano’s first theorem that per-
mits the calculation of the apportionment of displacements when
elements are arrayed in series is also shown. The extensions for
both the Castigliano theorems are developed immediately below
for discrete systems, after which, the tip deflection for a parallel
pairing of two Timoshenko cantilevers is found when they are
subjected to, respectively, a uniform load q0, a tip load P, and tip
moment M�.

2 Extensions of the Castigliano Theorems for Discrete
Systems

Consider an elementary discrete system of two linear springs
ostensibly connected in parallel. If each spring has stiffness ki and
supports an internal spring force Fi, the complementary energy
contained in the system is

U� = �
i=1

2
Fi

2

2ki
�1�

Note that the analysis that follows is readily extended to systems
with n springs. If an external load P is applied to the system, the
respective internal spring forces are assumed to be

F1 � rP and F2 = �1 − r�P �2�

where r is a positive constant, such that 0�r�1. Then the sys-
tem’s complementary energy �1� becomes

U� =
1

2
� r2

k1
+

�1 − r�2

k2
�P2 �3�

Castigliano’s second theorem states that the resulting system dis-
placement is found as

�par =
dU�

dP
= � r2

k1
+

�1 − r�2

k2
�P �4�

Equation �4� represents the statement of Castigliano’s second
theorem �10�, which can be derived by minimizing the total
complementary energy �� �9�. Thus, the force that minimizes the
total complementary energy produces a compatible displacement
as given by Eq. �4�.

But how is the value of r to be determined? It is easily shown
that the apportionment factor r is that which minimizes the system

displacement �par. Thus, the value of r for which
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d�par

dr
= 2� r

k1
−

�1 − r�
k2

�P = 0 �5�

s

r =
k1

k1 + k2
�6�

rom which, it then follows that

�par =
P

k1 + k2
�7�

quation �7� is a familiar and expected result, although its deriva-
ion is not. Further, it is evident that the value of r in Eq. �5� is
ctually a minimum since

d2�par

dr2 = 2� 1

k1
+

1

k2
�P � 0 �8�

hus, the following extension of Castigliano’s second theorem
merges:

The minimum of the �compatible� displacement of a parallel
system as determined by Castigliano’s second theorem cor-
responds to an equilibrium apportioning of the loads carried
by the elements in that system.

A physical interpretation of this result is as follows. Note that
he system displacement �7� found by this process means that each
pring has the same displacement, that is

�1 = �F1 = rP

k1
� � �par and �2 =

�F2 = �1 − r�P�
k2

� �par �9�

he value of r thus determined also guarantees that the displace-
ent of each element in this parallel system will be the same.
hus, it ought to be no surprise that the apportionment factor thus
etermined produces a familiar, seemingly self-evident result.

This extension of Castigliano’s second theorem is readily ex-
ended to systems with n degrees of freedom, in which case, the
orresponding complementary energy is written in terms of n dis-
ribution factors for which �i=1

n ri=1

Un
� = �

i=1

n
Fi

2

2ki
=

1

2
� r1

2

k1
+

r2
2

k2
+ ¯ +

�1 − r1 − r2 ¯ − rn−1�2

kn
�P2

�10a�

hich can also be written in the form

Un
� = � kn

k1
r1

2 +
kn

k2
r2

2 + ¯ + �rn−1 + rn−2 + ¯ + r1 − 1�2� P2

2kn

�10b�

nce again, Castigliano’s second theorem produces the system
isplacement, in this case

�par/n =
dUn

�

dP
= � kn

k1
r1

2 +
kn

k2
r2

2 + ¯ + �rn + rn−1 + ¯ + r1 − 1�2� P

kn

�11�

he minimization of the system displacement �par/n with respect to
he factors r1 ,r2 , ¯ ,rn−1 produces the following system of n

quations for those factors:
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�kn/k1 + 1� 1 ¯ 1 1

1 �kn/k2 + 1� ¯ 1 1

1 1 � 1 1

1 1 ¯ �kn/kn−2 + 1� 1

1 1 ¯ 1 �kn/kn−1 + 1�



��
r1

r2

]

rn−2

rn−1

� =�
1

1

]

1

1
� �12�

The simplicity of Eq. �12� enables it to be seen by inspection that
the �unique� solution to this linear system is �a formal derivation
may be found in the Appendix�

�
r1

r2

]

rn−2

rn−1

� = 
 1

�
i=1

n

ki��
k1

k2

]

kn−2

kn−1

� �13�

because the substitution of Eq. �13� into Eq. �12� yields

	
�kn/k1 + 1� 1 ¯ 1 1

1 �kn/k2 + 1� ¯ 1 1

1 1 � 1 1

1 1 ¯ �kn/kn−2 + 1� 1

1 1 ¯ 1 �kn/kn−1 + 1�



�
 1

�
i=1

n

ki��
k1

k2

]

kn−2

kn−1

� = 
 1

�
i=1

n

ki�
��

�kn + k1� + k2 + ¯ + kn−2 + kn−1

k1 + �kn + k2� + ¯ + kn−2 + kn−1

k1 + k2 + ¯ + kn + ¯ + kn−2 + kn−1

k1 + k2 + ¯ + �kn + kn−2� + kn−1

k1 + k2 + ¯ + kn−2 + �kn + kn−1�
� ��

1

1

]

1

1
� �14�

Equation �13� clearly shows that the load apportionment factors
for each of the n elements in the system are, in scalar form

rj =
kj

�
i=1

n

ki

, j = 1,2, ¯ ,n − 1 �15�

Finally, the Hessian matrix of the quadratic form �11� that makes
up the displacement �par/n is clearly a positive constant, that is

	
�kn/k1 + 1� 1 ¯ 1 1

1 �kn/k2 + 1� ¯ 1 1

1 1 � 1 1

1 1 ¯ �kn/kn−2 + 1� 1

1 1 ¯ 1 �kn/kn−1 + 1�

 � 0

�16�

Hence, the displacements of each element are the same minimum

displacement

Transactions of the ASME
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�i = �Fi = riP

ki
� � �par/n �17�

t is worth noting again that in contrast with traditional descrip-
ions in which a common displacement for parallel systems is
mposed ab initio as a constraint, this extension of Castigliano’s
econd theorem has that common displacement emerging as an
nd result.

A corresponding extension of Castigliano’s first theorem can be
eveloped for the displacements that result when a common load
s applied to a system of springs in series. Thus, if each spring has
tiffness ki and extends an amount �i, the strain energy stored in
he system is

U = �
i=1

2
1

2
ki�i

2 �18�

f an external load P is applied to the system, the respective spring
isplacements can be assumed to be

�1 � r� and �2 = �1 − r�� �19�

here r is again a positive constant, such that 0�r�1. Then the
ystem’s stored energy �1� becomes

U =
1

2
�k1r2 + k2�1 − r�2��2 �20�

astigliano’s first theorem states that the resulting force supported
y the system is

Pser =
dU

d�
= �k1r2 + k2�1 − r�2�� �21�

s with the discussion above �following Eq. �4��, it is well known
hat Eq. �21� represents the statement of Castigliano’s first theo-
em �10�, which can be derived by minimizing the total potential
nergy � �9�. Thus, the displacement that minimizes the total
otential energy produces the equilibrium statement, as given by
q. �21�.
Also similarly, the value of the apportionment factor r can be

etermined as that, which minimizes the system load Pser, that is,
he one for which

dPser

dr
= 2�k1r − k2�1 − r��� = 0 �22�

hich results in

r =
k2

k1 + k2
�23�

nd from which it follows that

Pser = � 1

k1
+

1

k2
�−1

� �24�

gain, Eq. �24� is familiar and expected, and here too, it is evident
hat the value of r in Eq. �23� actually corresponds to a minimum
f Pser since

d2Pser

dr2 = 2�k1 + k2�� � 0 �25�

hus, an extension of Castigliano’s first theorem now emerges:

The minimum of the �equilibrium� force in a series system as
determined by Castigliano’s first theorem corresponds to a
compatible apportioning of the displacements of the elements
in that system.

A physical interpretation of this result is also possible. Note that
he system load �24� found by this process means that each spring

upports or transmits the same load, that is

ournal of Applied Mechanics
F1 = k1��1 = r�� = Pser and F2 = k2��2 = �1 − r��� = Pser

�26�

The value of r thus determined also guarantees that the force
carried by each element in this parallel system will be the same.
Thus, it ought to be no surprise that the apportionment factor thus
determined produces still another familiar, seemingly self-evident
result.

3 Castigliano’s Second Theorem for Coupled Timosh-
enko Beams

The foregoing extension of Castigliano’s second theorem is
now used to examine the apportioning of loads in a continuous
coupled system, namely, that of coupled Timoshenko beams. The
shear and moment resultants of beams under a distributed load
q�x� are governed by classical equations of equilibrium �10�

dV�x�
dx

+ q�x� = 0

dM�x�
dx

− V�x� = 0 �27�

Which, for statically determinate beams, are straightforwardly in-
tegrated as �with x=0 taken at the cantilever root� to yield

V�x� = −�
H

x

q���d�

M�x� =�
H

x

V���d� = −�
H

x�
H

�

q���d�d� �28�

Note that Eqs. �27� and �28� are valid for elementary Euler beams
in bending, shear beams, and Timoshenko beams.

Consider now the case of a pair of Timoshenko beams support-
ing a load q�x� distributed along its length. The complementary
energy for such a coupled cantilever system is a straightforward
extension of the complementary energy for a single Timoshenko
beam that incorporates the energy due to both bending and shear
in each beam �10�

U2Timo
� = �

i=1

2

�Usi
� + Ubi

� � = �
i=1

2 ��
0

L �Vi�x��2

2Si
dx +�

0

L �Mi�x��2

2Bi
dx�
�29�

Each of the beams has its own bending stiffness Bi=EiIi and shear
stiffness Si=kiGiAi. Let the distributed load applied to the canti-
lever system be apportioned between the two beams, such that
q�x�=q1�x�+q2�x�, and include also a �similarly apportioned� tip
load P that will be used as a phantom load for determining the
cantilever tip’s deflection. The apportioned applied and �phantom�
tip loads are then

qi�x� � riq�x� and Pi � riP �30�
In view of Eq. �30�, the moment and shear resultants in each
Timoshenko beam can be written as

Vi�x� = ri�−�
0

x

q���d� + P� � ri�V�x� + P�

Mi�x� = ri�−�
0

x�
0

�

q���d�d� + P�x − H��
� ri�M�x� + P�x − H�� �31�

Now, the tip deflection for the distributed load �only� then fol-

lows from Castigliano’s second theorem �9� as

NOVEMBER 2010, Vol. 77 / 061005-3
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wq�x��L� = �dU2Timo
�

dP
�

P→0
= �

i=1

2 ��
0

L
Vi�x�

Si

dVi�x�
dP

dx

+�
0

L
Mi�x�

Bi

dMi�x�
dP

dx� �32�

o that the substitution of Eq. �31� into Eq. �32� produces the tip
eflection in the form

wq�x��L� = �
i=1

2 �� ri
2

Si
���

0

L

V�x�dx + ��i
2

L2��
0

L

M�x��x − L�dx��
�33�

here a dimensionless factor has been introduced in Eq. �33�

�i
2 �

L2Si

Bi
=

kiGi

Ei
�AiL

2

Ii
� �34�

ote that the ratio �34� is defined for each beam individually, and
hus, are not to be confused with a similar dimensionless param-
ter 	 defined in Refs. �7,8� to couple a shear beam to a Euler
eam to model the behavior of various combinations of frames
nd shear walls.

Note further that Eq. �33� contains two constants that represent
eighted averages of the shear and moment resultants, that is

V̄ ��
0

L

V�x�dx and M̄ ��
0

L

M�x��x − L�dx �35�

o that Eq. �33� can also be written as

wq�x��L� = V̄�
i=1

2 �� ri
2

Si
��1 + �i

2� M̄

L2V̄
��� �36�

Equation �36� can be cast in terms of an effective stiffness of
ach Timoshenko beam that corresponds to the particular loading

hat produces the weighted stress resultants V̄ and M̄

KTi =
Si

1 + �i
2� M̄

L2V̄
� �

Si

1 + �i
2/a2 �37�

here a2 is a constant fraction that reflects those weighted stress
esultants

a2 � L2V̄

M̄
�38�

hen, in view of Eqs. �36� and �37�, the tip deflection assumes its
early final form

wq�x��L� = V̄�
i=1

2 � ri
2

KTi
� �39�

quation �39� represents the discretized tip deflection of a canti-
ever system of �in this case� two Timoshenko beams subjected to

he load that produces the weighted shear V̄. How is that load to
e distributed among the parallel elements that make up the sys-
em?

For the case of �only� two coupled beams, there is only one
ndependent apportionment factor, that is

r1 = r and r2 = �1 − r� �40�
o that Eq. �39� then becomes

61005-4 / Vol. 77, NOVEMBER 2010
wq�x��L� = � r2V̄

KT1
� + � �1 − r�2V̄

KT2
� �41�

Following the procedure proposed above for discrete systems, Eq.
�41� can be minimized to determine the value of the apportion-
ment factor r that minimizes the tip deflection of the cantilever
system. This, in turn, produces a compatible tip deflection of the
system that properly preserves equilibrium of the applied loading
with the forces carried in the two Timoshenko beams. In that
instance, the minimizing value of the apportionment factor is eas-
ily found to be

rmin =
KT1

KT1 + KT2
=

1

1 +
KT2

KT1

=
1

1 +
1 + �1

2/a2

1 + �2
2/a2�S2

S1
� �42�

and the corresponding tip deflection is

wq�x��L� =
V̄

KT1 + KT2
�43�

Of course, Eq. �43� is a very familiar form, albeit derived with the
formal apportionment approach derived from Castigliano’s second
theorem and presented in a general form that is applicable to any
load q�x� applied along the length of the cantilever system. Equa-
tion �43� can also be written to reflect the four �for the case of two
Timoshenko beams� independent stiffness terms �i.e.,
S1 ,S2 ,B1 ,B2 or S1 ,S2 ,�1

2 ,�2
2� in two equivalent, symmetric forms

wq�x��L� =
1 + �1

2/a2

1 +
1 + �1

2/a2

1 + �2
2/a2�S2

S1
��

V̄

S1
� =

1 + �2
2/a2

1 +
1 + �2

2/a2

1 + �1
2/a2�S1

S2
��

V̄

S2
�

�44�

Equations �44� thus represent the tip deflection of a coupled pair
of cantilevered Timoshenko beams as a �symmetric� function of
the two dimensionless ratios �i

2. Note that, as mentioned earlier,
these ratios refer to the properties of each of the Timoshenko
beams independently.

Special cases are readily derived. Consider, for example, a Eu-
ler beam �i=1� in bending coupled with a simple shear beam �i
=2�. A Euler beam requires that S1→
 and �1

2→
, while
�1

2 /S1→L2 /B1, and a shear beam requires B2→
 and �2
2→0,

while �2
2B2→L2S2. Then the apportionment ratio for the Euler-

shear combination is

rmin =
a2B1/L3

a2B1/L3 + S1/L
�45�

while the concomitant tip deflection is

wq�x��L� =
V̄/L

a2B1/L3 + S1/L
�46�

Equations �45� and �46� clearly reflect the parallel stiffnesses of
the Euler �a2B1 /L3� and shear �S1 /L� beams.

To illustrate how the tip deflection varies with the actual load
distribution, consider the case of a uniform distributed load, that
is, q�x�=q0, a constant. The shear and moment resultants follow
from Eq. �20� as

V�x� = − q0�x − L�

M�x� = −
q0�x − L�2

2
�47�
Then the parameters defined in Eqs. �35� and �38� are found to be

Transactions of the ASME
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V̄ =
q0L2

2
, M̄ =

q0L4

8
, a2 = 4 �48�

o that the tip deflection �or building or story drift� under a uni-
orm load is

wq0
�L� =

1 + �1
2/4

1 +
1 + �1

2/4
1 + �2

2/4
�S2

S1
��

q0L2

2S1
� =

1 + �2
2/4

1 +
1 + �2

2/4
1 + �1

2/4
�S1

S2
��

q0L2

2S2
�

�49�

By way of comparison, consider a tip load P carried by two
imoshenko beams, in which case, the moment and shear result-
nts are found from Eq. �20�

M�x� = P�x − L�

V�x� = P �50�
hen the parameters defined in Eqs. �35� and �38� are found to be

V̄ = PL, M̄ =
PL3

3
, a2 = 3 �51�

o that the tip deflection �or building or story drift� under a tip
oad is

wq0
�L� =

1 + �1
2/3

1 +
1 + �1

2/3
1 + �2

2/3
�S2

S1
��

PL

S1
� =

1 + �2
2/3

1 +
1 + �2

2/3
1 + �1

2/3
�S1

S2
��

PL

S2
�
�52�

Finally, consider a coupled pair of Timoshenko beams loaded
y a tip moment M�. In this case, the shear force V�x�=0, so that
q. �33� must be modified in the light of the definition �34� to read

wq�x��L� = �
i=1

2 �� ri
2

Si
���i

2� M̄

L2��� � �
i=1

2 �� ri
2

Bi
�M̄� �53�

n this instance, M̄ =�0
LM��x−L�dx=M�L2 /2, so that the tip de-

ection of the beam loaded by the tip moment follows from Eq.
53� as

wq�x��L� = �
i=1

2 �� ri
2L2

2Bi
�M�� �54�

quation �54� shows that the stiffness of each beam in response to
he tip moment M� can be identified as KTM�i=2Bi /L2, with a
orresponding apportionment factor r=KTM�1 / �KTM�1+KTM�2�,
hich in turn allows the tip displacement to be written as

wM��L� =
M�

KTM�1 + KTM�2
=

M�L2

2�B1 + B2�
�55�

t is important to recognize that the two foregoing results appor-
ion the loads on the coupled Timoshenko beam model in accord
ith satisfying equilibrium and ensuring compatible displace-
ents, which is precisely the outcome of applying Castigliano’s

econd theorem �10�. It happens that the usual discrete modeling
eflected above yields the same result for the discrete tip load and
oment.

Conclusions
Extensions of the well known Castigliano theorems were devel-

ped in the context of modeling the behavior of both discrete
oupled systems and various coupled beam sets. It was shown that
he proper apportionment of loads among parallel system elements
ould be determined by minimizing of the displacement of that
arallel system as dictated by Castigliano’s second theorem. Simi-
arly, it was shown that the correct distribution of the displace-
ents of a set of series elements follows from the minimization of

ournal of Applied Mechanics
the load in that series system, as defined in Castigliano’s first
theorem. These extensions also provide a means for apportioning
loads in coupled continuous systems, as was shown for the cases
of coupled cantilever Timoshenko beams supporting discrete and
continuous loads.

Finally, in their various form, Eqs. �44�, �49�, �52�, and �55�
make clear that the effective stiffness of this coupled beam model
depends on four material properties �E1 ,G1 ,E2 ,G2� and five geo-
metric properties �I1 ,A1 , I2 ,A2 ,H�, albeit encompassed in the
shear �Si� and bending �Bi� stiffnesses. However, it is the pair of
dimensionless ratios ��i

2 ,a2� that are most useful for both analysis
estimates and preliminary design for, as shown elsewhere �11�,
these rather straightforward design guides provide very good
agreement with the far more complex exact results.
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Appendix
A formal derivation of the solution �13� can be found as fol-

lows. The basic equations �12� to be solved are written in matrix
form as

Kr = v �A1�

Here, r and v are column matrices with n−1 rows

r � �r1 r2 ¯ rn−1 rn−2 �T, v � �1 1 ¯ 1 1 �T

�A2�

and a symmetric stiffness matrix K of order n−1 is defined as

K � 	
�kn/k1 + 1� 1 ¯ 1 1

1 �kn/k2 + 1� ¯ 1 1

1 1 � 1 1

1 1 ¯ �kn/kn−2 + 1� 1

1 1 ¯ 1 �kn/kn−1 + 1�



�A3�
Note that the quantity 1 can be subtracted from every element of
the stiffness matrix �A2�, which allows it to be rewritten as the
following sum:

K = D + vvT �A4�

where D is a diagonal matrix of order n−1

D � 	
kn/k1 0 ¯ 0 0

0 kn/k2 ¯ 0 0

0 0 � 0 0

0 0 ¯ kn/kn−2 0

0 0 ¯ 0 kn/kn−1


 �A5�

In view of Eqs. �A2� and �A5�, Eq. �A3� can be written as

K = D�I + D−1vvT� � D�I + uvT� �A6�

where I is the unit matrix of order n−1 and a new variable u has
been introduced

u � D−1v = �1/kn�k �A7�

and where in parallel with Eq. �A2� k is a column matrix with
n−1 rows

k � �k1 k2 ¯ kn−1 kn−2 �T �A8�

Now, the matrix D in Eq. �A6� is invertible since ki�0 for i

=1,2 , . . . ,n. Further, since
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i

w
�

s
c

T
�

w

T

0

uvT = D−1vvT =
1

kn	
k1 k1 ¯ k1 k1

k2 k2 ¯ k2 k2

¯ ¯ ¯ ¯ ¯

kn−2 kn−2 ¯ kn−2 kn−2

kn−1 kn−1 ¯ kn−1 kn−1


 �A9�

t can be shown that �see Exercise 5.13 in Ref. �12��

det�I + uvT� = det�1 + vTu� = 1 + vTu �A10�

here vTu is a scalar that is readily evaluated from Eqs. �A2� and
A7�, that is

vTu = kn
−1�

i=1

n−1

ki � kn
−1�

i=1

n

ki − 1 �A11�

o that the matrix �I+uvT� is also invertible. Then, by direct cal-
ulation it follows that

�I + uvT�−1 = �I −
uvT

1 + vTu
� = � �1 + vTu�I − uvT

1 + vTu
�

=
�kn
−1�

i=1

n

ki�I − uvT

kn
−1�

i=1

n

ki
� �A12�

he inverse of the matrix �A6� is then found by substituting Eq.
A12� therein and performing the required inversion, that is

K−1 = �I + uvT�−1D−1 =
�kn
−1�

i=1

n

ki�I − uvT

kn
−1�

i=1

n

ki
�D−1

= D−1 −
knuvT

�
i=1

n

ki

D−1 �A13�

here the inverse of the diagonal matrix D is

D−1 =
1

kn	
k1 0 ¯ 0 0

0 k2 ¯ 0 0

0 0 � 0 0

0 0 ¯ kn−2 0

0 0 ¯ 0 kn−1


 �A14�

hen the load apportionment factors are
61005-6 / Vol. 77, NOVEMBER 2010
r = 	D−1 −
knuvT

�
i=1

n

ki

D−1
v �A15�

Equations �A9� and �A14� can then be used to show that

knuvT

�
i=1

n

ki

D−1v =

�
i=1

n−1

ki

kn�
i=1

n

ki

k =

�
i=1

n

ki − kn

kn�
i=1

n

ki

k �A16�

And lastly, after substitution of Eqs. �A14� and �A16� into Eq.
�A15�, the load apportionment factors are found to be exactly
those in Eq. �13�, that is

r = �1��
i=1

n

ki�k �A17�
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