
1

u
a
i
e
c
f
R
r
r
f

t
r
�
t
T
d
d
n
p
t
d
i
s
S
f
t
b
e
e
�
l
a
a
f
a
s
t
m
s
r

f
i

i
m
d

J

Clive L. Dym
Department of Engineering,

Harvey Mudd College,
301 Platt Boulevard,

Claremont, CA 91711
e-mail: clive_dym@hmc.edu

Consistent Derivations of Spring
Rates for Helical Springs
The spring rates of a coiled helical spring under an axial force and an axially directed
torque are derived by a consistent application of Castigliano’s second theorem, and it is
shown that the coupling between the two loads may not always be neglected. The spring
rate of an extensional spring is derived for the first time through the use of the displace-
ment based principle of minimum total potential energy. The present results are also
compared with available derivations of and expressions for the stiffness of a coiled
spring. �DOI: 10.1115/1.3125888�
Introduction
Modern textbooks on strength or mechanics of materials often

se the classic linear spring F=kx to represent or highlight various
spects of behavior, including the bending of beams and the twist-
ng of elastic rods. Interestingly though, while analyses of the
xtensional spring itself were a staple of earlier texts on the me-
hanics of materials �i.e., Refs. �1–3��, they are not typically
ound in current texts on the subject, one exception being that in
ef. �4�. Further, the discussions in the older texts focused prima-

ily on Wahl’s strength analysis of the cross section of the curved
ods of which the spring is made �5,6�, although the spring’s de-
ormation was sometimes included in these presentations �1,2�.

One exposition of the stiffness of a coiled spring is contained in
he 1969 reprinting of Southwell’s �7� classic treatise. That work
eports correct results obtained with Castigliano’s second theorem
CST�, but its derivation is in an abbreviated, idiosyncratic form
hat is not especially useful to students of mechanics or design.
he spring is also a topic of interest in books on mechanical
esign �or mechanical engineering design�. Shigley et al. �8� also
erived the spring’s stiffness �or spring rate or scale� in a manner
ot unlike Southwell, and while their final, practically useful ap-
roximation is also correct, its derivation makes different assump-
ions. Southwell’s derivation includes the complementary energy
ue to both torsion and a transverse moment, while Shigley, et al.,
nclude the complementary energy due to torsion and to transverse
hear. Boresi and Schmidt also applied CST in a derivation like
outhwell’s, but they introduced a �later� minor simplification
rom the very beginning �4�. It is worth noting that each of these
hree explications of the spring rate of an extensional spring is
ased on CST, and that no connection is made to the spring’s
xtensional deformation. That link will be made here via the strain
nergy based principle of minimum total potential energy
PMTPE�, an approach to this problem that does not appear in the
iterature. Finally, Ref. �9� appears to provide the only analysis of

helical spring under the simultaneous loading of an axial force
nd an axially directed torque. Wittrick’s analysis ignored the ef-
ects of shear and axial �along the coil’s local axis� deformation
nd emerges from the present analysis when the appropriate as-
umptions are made. What also emerges here is the observation
hat the two loads do produce a coupled deformation pattern that

ay, in fact, prove significant even at coil pitch angles that are
maller than might be expected from the analysis of the two sepa-
ate, uncoupled problems.

The present work is motivated by the desire to make available a
ully consistent derivation of the state of stress in a coiled helix,
ncluding both torsion and transverse components, and to make
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explicit the several approximations that are generally and appro-
priately made. These assumptions, both about the coil’s dimen-
sions and the spring’s helix angle �or pitch� �, underlie the proper
application of these derived spring rates to design. Thus, while the
general practice of spring design is unlikely to be affected by the
availability of a consistent derivation, a new caution emerges, and
the long term understanding of future students and practitioners of
design can only be enhanced.

2 Stress Components in a Helical Spring
Using the standard helical coordinates shown in Fig. 1, the

distance to any point P on the centerline of the helical coil shown
is

r�O/P� = Rer + z���ez �1�

Then, for the given axial spring force F=Fez, a free-body diagram
would show that the applied torque produced on a negatively di-
rected face at the point P is

Mapplied
F = r�O/P� � F = − FRe� �2�

If a torque T directed along the spring’s axis Mapplied
T =Tez is added

as a load on the spring, the total applied moment is

Mapplied = Mapplied
F + Mapplied

T = − FRe� + Tez �3�
Conversely, on an internal cross section of the coil a local co-

ordinate system can be identified in terms of the basic helical
coordinates as

ex = cos �e� + sin �ez

ey = − er

ez� = − sin �e� + cos �ez �4�

where ex is a unit vector along the coil’s tangent line and ez� is a
unit vector in the plane of the coil wire’s cross section as dictated
by the vector product ez� =er�ex, and � is the helix angle of the
coil. The moment acting on a slightly inclined �at the helical angle
��, positively directed cross section of the coil can then be written
as

M = Mxex + Myey + Mz�ez� �5�

or, in terms of the original helical coordinate system

M = Mx�cos �e� + sin �ez� + Myey + Mz��− sin �e� + cos �ez�

�6�

Moment equilibrium is then enforced simply as M=Mapplied,
which amounts to simply equating Eq. �3� to Eq. �6�. This yields

the local components of M as
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Mx = − FR cos � + T sin �

My = 0

Mz� = FR sin � + T cos � �7�

ence, Eq. �5� becomes

M = �− FR cos � + T sin ��ex + �FR sin � + T cos ��ez� �8�

imilarly, the force acting on the slightly inclined, positively di-
ected cross section of the coil can then be written as

F = Nex + Fyey + Vez� �9�

here N is the �normal� stress resultant directed along the coil’s
angent, Fy and V are the radial and transverse �vertical� compo-
ent of the shear force acting on the plane. Force equilibrium is
nforced as F=Fez so that the local components of F can be found
y using the coordinate transformation process just followed:

N = F sin �

Fy = 0

V = F cos � �10�
ence, Eq. �8� becomes

F = F�sin �ex + cos �ez�� �11�

ote that all of the force �Eq. �10�� and moment �Eq. �8�� com-
onents are constant along the axis of the coil’s wire �as distinct
rom the axis of the spring itself�.

Deformation of a Helical Spring Via Castigliano’s
econd Theorem
The deformation of a helical spring is straightforwardly found

y applying CST with the stress state defined by Eqs. �6� and �9�.
ince that state of stress does not vary along the coil, and since the
omponents of Eqs. �6� and �9� reflect torsion along the centerline
f the coil, bending normal to the centerline, transverse shear, and
xial tension, the complementary energy is �10�

U� =�
0

Lc � Mx
2

2GJ
+

Mz�
2

2EI
+

V2

2GA
+

N2

2EA
�dx �12�

here x is the local coordinate along the line of centroids of the

ig. 1 „a… An axially loaded helical spring and „b… the coordi-
ate systems for the spring and a face at a point P along the
enterline of the coil. The pitch of the spring coil is given by
=2�R tan �.
oil cross sections and Lc is the total length of the coil, that is

71004-2 / Vol. 131, JULY 2009
Lc = n�2�R�/cos � �13�

and there are n coils in the spring. The properties of the wire
making up the spring coil that appear in Eq. �4� are the elastic
modulus E, the shear modulus G=E / �2�1+��� with a Poisson
ratio �, the cross-sectional area A=�d2 /4 with a wire diameter d,
the second moment of that area I=�d4 /64, and the polar moment
of that area J=2I. Note that all coils are assumed to be active
throughout, so that the number of active coils and the total number
of coils are one and the same. Further, since none of the various
stress resultants varies with the coordinate x along the length of
the coil, Eq. �12� can be written as the simpler

U� =
Lc

2GJ
�Mx

2 +
GJ

EI
Mz�

2 +
J

A
V2 +

JG

EA
N2� �14�

With the stress components Mx, Mz�, V, and N defined in Eqs. �7�
and �10�, the complementary energy �Eq. �14�� can be found to be

U� =
LcR

2

2GJ
��cos2 � +

GJ

EI
sin2 � +

J

AR2cos2 � +
GJ

EAR2sin2 ��F2

− �2	1 −
GJ

EI

sin � cos ��F	T

R



+ �sin2 � +
GJ

EI
cos2 ��	T

R

2� �15�

Wittrick’s statement of the complementary energy, the only one to
attack the coupled problem, can be found in Eq. �15� if the terms
J /AR2 are regarded as small compared with 1 �9�. All of the other
analyses are for uncoupled extensional springs �T=0�, and so the
comparisons are with the first bracketed term �that multiplied by
F2� in Eq. �15�. Southwell’s formulation of the complementary
energy contains only the first two terms due to the torsion and the
transverse moment �7�. Boresi and Schmidt did the same, except
that they approximated the length of the spring as Lc=n2�R from
the very beginning �4�. The formulation in Ref. �8� contains the
first term and the third term with cos � taken as unity, that is,
assuming that the torsion and the shear force act on a vertical face
of the coil �as if �=0�. As will be discussed further below, the
second, third, and fourth terms are generally negligible, albeit for
somewhat different reasons, so that these differences are unlikely
to affect the design and selection of standard extensional springs.

The coil is now assumed to be the usual solid circular wire of
diameter d, for which J=2I. With D=2R, and using both the
standard definition of the shear modulus G and the commonly
defined spring index c�D /d, Eq. �15� can be written as

U� = 	 n�

8 cos �

D3

GJ
��	1 +

1

2c2
cos2 � + 	1 +
1

4c2
 sin2 �

�1 + ���F2

− � 2�

�1 + ��
sin � cos ��F	T

R

 + �sin2 � +

cos2 �

�1 + ���	T

R

2�
�16�

Equation �16� can be written in terms of flexibility coefficients
�11� as

U� = 1
2 f11F

2 − 2f12FT + 1
2 f22T

2 �17�

where the flexibility coefficients are

f11 = 	 n�D3

4GJ cos �

�	1 +

1

2c2
cos2� + 	1 +
1

4c2
 sin2 �

�1 + ���
f12 = 	 �n�D2 
�sin � cos ��
2�1 + ��GJ cos �
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f22 =
n�D

GJ cos �
� cos2 �

�1 + ��
+ sin2 �� �18�

wo response modes are encapsulated in the complementary en-
rgy �Eq. �17��: The �net� extension �ext of the free end of a spring
ue �largely� to the axially applied force F and the �net� torsion
ngle �tors at the free end of the spring due �largely� to the torsion
. These deformations are determined by applying CST to Eq.
17�, with the results expressed in terms of the following symmet-
ic flexibility matrix �11�:

� �ext

�tors
� = � f11 − f12

− f12 f22
��F

T
� �19�

everal features of Eqs. �18� and �19� are worth noting. First, all
ther properties being equal, Eq. �18� suggests that the spring’s
exibility increases as the number of its coils increases, an assess-
ent that conforms to both experience and intuition. Similarly, the
exibilities increase with the coil’s diameter D, albeit to different
owers: D3 for the extensional flexibility f11, D2 for the coupled
exibility f12, and D1 for the torsional flexibility f22. Three other
ehavior indicators warrant further discussion: the appearance of
he spring index c in the second and fourth terms of the exten-
ional flexibility f11, the effect of the pitch angle �, and the cou-
ling between the extensional and torsional modes displayed in
q. �19�.

3.1 Spring Index Effects. The spring index c appears only in
he influence coefficient f11 in terms corresponding to the defor-

ation due to shear and normal force on a nonvertical cross sec-
ion of the coil’s rod, as is evident from an annotated version of
hat �first� influence coefficient

�20�

ince the spring index is typically large �i.e., c�1� these contri-
utions due to shear and extensional deformation are almost al-
ays negligible, which is a result familiar from the beam theory

10�. If the second and fourth terms in f11 are neglected, the ex-
ensional flexibility becomes

f11
0 = 	 n�D3

4GJ cos �

�cos2 � +

sin2 �

�1 + ��� �21�

he flexibility coefficients �Eqs. �20� and �21�� can be compared
n order to assess the relative importance of the spring index c.
uch a comparison would likely have the most meaning when the
pring is subjected only to an axial force F �i.e., T=0�, in which

Table 1 Variation in the extensional stiffness
=D /d and pitch angle � that is loaded only by
�=0.30

c �=5 deg �=10 deg

4 1.0312 1.0239
5 1.0199 1.0198
10 1.0050 1.0049
20 1.0013 1.0013
ase a ratio of those two influence coefficients is coincident with

ournal of Mechanical Design
the inverse ratio of corresponding stiffness coefficients and can be
written as

f11

f11
0 =

	1 +
1

2c2
 + 	1 +
1

4c2
 tan2 �

�1 + ��

1 +
tan2 �

�1 + ��

=
k11

0

k11
� 1 �22�

Equation �22� clearly shows that retention of the spring index
terms, which are typically neglected or dropped, leads to greater
flexibility �or smaller stiffness� because those terms allow shear
and extensional deformation that are constrained to vanish when
c=0. The degree to which that softening occurs is clearly modu-
lated as well by the pitch angle �, as is confirmed by the data
displayed in Table 1. These data also suggest that spring index
effects can be ignored for most practical applications, as will be
done below.

3.2 Pitch Angle Effects. The flexibility coefficients �Eq. �18��
clearly depend on the pitch angle �. Terms including sin � repre-
sent contributions of �1� the applied force F to the coil’s axial
stress resultant N �on a face inclined at the helix angle �� and to
the transverse moment Mz

�, and �2� the applied torque T to the
transverse moment Mz

�. When both F and T are applied, and the
matrix Eq. �19� is inverted, equilibrium is expressed as

�F

T
� = �k11

0 k12
0

k12
0 k22

0 �� �ext

�tors
� �23�

where the stiffness coefficients �for c�1� are

k11
0 =

4GJ cos �

n�D3 �cos2 � + �1 + ��sin2 ��

k12
0 = 	2�GJ cos �

n�D2 
�sin � cos ��

k22
0 =

EJ cos �

2n�D
��1 + ��cos2 � + sin2 �� �24�

To more fully explicate the effects of pitch angle, the trigonomet-
ric terms are expanded as Taylor series, in which case the stiffness
terms become

k11
0  	 4GJ

n�D3
�1 + O��2��

k12
0 = 	2�GJ�

n�D2 
�1 + O��2��

k22
0 = 	 EJ

2n�D

�1 + O��2�� �25�

Clearly, for closely packed coil springs where the spring’s pitch is
very small, the extensional stiffness becomes the “standard”

tio „Eq. „22…… for a spring with spring index c
axial force F „i.e., T=0…; the Poisson ratio is

k11= f11 / f11
0

=15 deg �=20 deg �=35 deg

1.0305 1.0298 1.0281
1.0195 1.0191 1.0180
1.0049 1.0048 1.0045
1.0013 1.1102 1.0012
ra
an

k11
0 /

�

spring rate, that is

JULY 2009, Vol. 131 / 071004-3
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k11
0 

4GJ

n�D3 �26�

his result is exactly that found in Refs. �2,4,7,8,12�, and in many
ther sources. Equations �23�–�25� make explicit the fact that the
xtensional stiffness of an axial spring is due to the torsional
tiffness GJ of the spring coil’s cross section. This means that the
tandard �i.e., close packed� extensional spring can be modeled as
�periodic� set of n straight rods of length L=2�R in torsion.

imilarly, for such small helical angles, the torsional stiffness be-
omes

k22
0 

EJ

2n�D
�

EI

n�D
�27�

gain, this is the standard result found in many places �8,12� and
t reflects a similarly “odd” response. That is, while the exten-
ional spring responds in torsion, the torsional spring response is
overned by the bending of the coils about an axis normal to the
oil wire’s centerline.

3.3 Coupling Effects. Perhaps the most intriguing issue is the
nterpretation of the coupled stiffness k12

0 . While it is more than
ikely that the pitch angle � will be small enough to ignore cou-
ling between extensional and torsional loading and deformation,
he foregoing analysis at least suggests that such coupling can
ccur because k12

0 depends linearly on the pitch angle even in the
mall angle analysis of Eq. �25�. In fact, Eqs. �19� and �23� make
lear that even absent an applied torque T, the extensional force
ill produce a rotation of the spring coil given by

�tors =
F

k12
0 �28�

hus, in principle, there will always be some rotation or torsional
otion of an extensional spring subjected only to an axial load.
his also means that in order to restrain the spring from such

otation, a constraining torque T� would have to be developed in
n amount

T� =
f12

0

f22
0 F =

� sin 2�

cos2 � + �1 + ��sin2 �
	FD

4

 �29�

or the typical spring with a small pitch angle, the constraining
orque is then,

T���→0  ��	FD

2

 �30�

hus, the constraining torque T� required to eliminate rotation of
he spring is a fraction of the torque induced in the coil wire by
he extensional force �i.e., FD /2� that is just ��. That this fraction
s rather small is clearly evident from the numbers presented in
able 2. Of course, this part of the analysis only hints at the
omplexities involved in examining the end conditions for springs
ith both small and large pitch angles �6�.

Spring Rate of an Extensional Spring via Minimum
otal Potential
The foregoing derivation, based on CST, depends on identify-

able 2 The variation in the dimensionless constraining
orque needed to eliminate the rotation of an extensional
pring with pitch angle; the Poisson ratio is n=0.30

�=5 deg �=10 deg �=15 deg �=10 deg �=15 deg

T���→0

�FD/2�
0.0262 0.0524 0.0785 0.1047 0.1571
ng the equilibrium state as an input to that theorem. In order to

71004-4 / Vol. 131, JULY 2009
construct a parallel derivation to determine the proper spring con-
stant by using the PMTPE, a proper formulation of the displace-
ment field is needed as input. The axial displacement or extension
of a helical spring loaded only by the axial force F can be found
by applying Castigliano’s theorem to either of Eq. �15� and �16�
with the torque T set to zero. With the physical sources from
which it derives highlighted, that deflection is

�31�

For the standard case of closely packed coils sin ��	1, the
terms due to Mz� and N can be neglected, and each cosinusoid in
Eq. �31� can be replaced by 1. �This also means that the twist �tors
due to F can also be neglected.� Hence,

�32�

where, in this instance, f11
0 is the simple inverse of Eq. �26� �and

also given by Eq. �21� with �0�, and fshear is the flexibility of a
simple shear beam of length Lc under a load F

fshear =
Lc

GA
�33�

For a coil of high spring index c, the shear extensional flexibility
ratio is very small

fshear

f11
0 =

4J

AD2 =
1

2c2 	 1 �34�

so the shear deformation can be neglected.
Under these circumstances, the vertical deformation of most

significance is just due to the model wherein the standard exten-
sional spring can be viewed as a �periodic� set of n straight rods of
length L=Lc=�D, to each of which a torque is applied along its
axis. In this model there is no warping, that is, there is no dis-
placement along the rod’s axis and its plane sections remain plane.
The helical coil in the spring is assumed to respond similarly, so
that the components of displacement parallel to the y and z axes of

Fig. 2 The dominant part of the extension �ext= „f11
0 + fshear…F

· f11
0 F of a helical extensional spring is due to the twist � of a

section of a rod that results from the downward force F that
creates the torque FD /2
a cross section �see Fig. 2� are, respectively,

Transactions of the ASME
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v�x,y,z� = − �tzx

w�x,y,z� = �tyx �35�

here �t is the rate of twist of the plane section. �Note that most
exts use an unadorned � to denote the twist rate of a circular rod,
ut that variable was already used for the pitch angle of the coil,
hich is also widely used notation�. The shear strains correspond-

ng to the displacements �Eq. �31�� are then easily found to be


yx = − �tzx


zx = �tyx �36�

he strain energy U due to torsion in n of such rods can then be
alculated from �10�

U = n 1
2G�

0

Lc�
A

�
yx
2 + 
zx

2 �dAdx �37�

hich in view of Eq. �36� can be integrated and cast in terms of
he twist rate �t as

U = n 1
2GJLc�t

2 �38�

Now, for a straight circular rod under torsion, there is no net
ertical deflection of the rod because the centroids of each of the
ections do not move. However, imagine that the torque T that
auses torsion of the coil is applied through a vertical force F that
s applied along a diametrical line whose length equals that of the
oil radius R=D /2 �see Fig. 2�. As the vertical force F moves
ownward a distance �c while applying a torque to the end of the
od �at x=Lc2�R�, the coil cross section experiences a twist
ngle � that is related to the twist rate �t by

� = �tx �39�

he displacement �c, the vertical displacement of the point �Lc ,
d /2,0�, and the twist angle � are related by similar triangles

tan � =
�c

D/2


w�Lc,− d/2,0�
d/2

�40�

hen, in view of Eq. �40� and the second of Eq. �35�, the displace-
ent �c for small twist angles � can be cast in terms of the twist

ate �t as

�c  �D/2�� = �D/2�Lc�t = ��D2/2��t �41�

Equation �41� is true for one coil. If there are n of such coils in
he spring, the total vertical displacement of the force F �which is
lso the extension of the coiled spring� that causes the torque is
hen

�ext = n�c = �n�D2/2��t �42�

ence the strain energy for n coils is found by substituting Eq.
42� into Eq. �38� which results to

U =
2GJ�ext

2

n�D3 �43�

hen the total potential energy � is found by adding the potential
f the applied axial load F to the strain energy �Eq. �43��

� =
2GJ�ext

2

n�D3 − F�ext �44�

n accord with the PMTPE, the vanishing of the first variation in
he total potential energy of Eq. �44� then yields the equation of
quilibrium of the extensional spring, expressed in terms of the
isplacement � :
ext

ournal of Mechanical Design
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n�D3
�ext = F �45�

The spring rate for the standard extensional spring is readily ap-
parent in Eq. �45�.

5 Conclusions
The extensional and torsional stiffness of a standard helical

spring under combined axial forces F and torques T were derived
from basic principles. The first derivation showed that a complete
analysis based on Castigliano’s second theorem confirmed well
known results while illustrating the minor �and generally inconse-
quential� inconsistencies of previous derivations. Further, it also
showed that some coupling between the extensional and rotational
responses occurs even at small pitch angles. It is worth noting,
however, that the coupling exposed above is limited by the con-
straints of linear elasticity, in contrast with the changes in spring
geometry and stiffness due to the spring strain that emerge in a
nonlinear analysis �5,6�. The torsional stiffness of a helical spring
also emerged from this derivation, albeit with a better founded
equilibrium condition than that typically portrayed in mechanical
design textbooks. The second derivation of the extensional stiff-
ness showed for the first time that the same result could also be
obtained using the principle of minimum total potential energy.

The results clearly show that the extensional stiffness varies
linearly with the torsional stiffness of the rod cross section and
inversely with the number of spring coils. The stiffness also soft-
ens as the helix angle �or the pitch� of the coil increases, so that
loosely packed springs are less stiff than closely packed springs
�for which the effect of the pitch angle may be neglected�. It is
also interesting that the first of Eq. �18� suggests that a thicker rod
also tends to increase the spring’s extensional flexibility, likely
because it allows local shear and extensional deformation that are
constrained to vanish in an analysis that does not admit them.

Finally, it is worth noting that the foregoing analyses do not
include the effects of varying end conditions. End conditions are
likely best modeled using finite element analysis �FEA� custom-
ized for the specific situation in which the spring is used, once a
final design of the spring body was done with the formulations
developed above.
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