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Abstract It is shown that displacement calculations for two classical ‘chestnuts’ – thick cylinders and
spheres under internal and external pressures – present results that are not easily anticipated. Thus,
such analyses provide an interesting opportunity for students (and teachers) taking elementary and
advanced courses in the strength of materials to explore and perhaps enhance their physical intuition.
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Introduction

Courses in the strength of materials almost always include studies of the effects of
internal and external pressure on circular cylinders and spheres. In elementary or
first courses, the analyses are typically for very thin shell structures, and the mod-
eling is aimed toward determining stress components. In particular, it is shown that
the in-plane stresses (circumferential and axial for cylinders, circumferential and
meridional for spheres) are larger than the transverse normal stress by a factor pro-
portional to the radius-to-thickness (R/h) ratio. In advanced courses in the strength
of materials and applied elasticity, the stress distributions through thick cylinders
and spheres are calculated, and the limiting thin-shell results are derived from them.
The corresponding displacements (and strains) are rarely, if ever, discussed. Inas-
much as displacements of thick-walled cylinders are not usually a significant design
issue, this is an understandable if regrettable omission.

However, it turns out that the consideration of displacements and the resulting
geometry questions provide an interesting opportunity for students (and their teach-
ers) to test and enhance their intuition. The basic questions are two:

• For an internally pressurized thick cylinder or sphere, does a point on the loaded
(inner) surface move more than or less than a point on the unloaded (outer)
surface?

• For an externally pressurized thick cylinder or sphere, does a point on the loaded
(outer) surface move more than or less than a point on the unloaded (inner)
surface?

The answers to these two questions are not as obvious as it first appears, and they
differ with the load (i.e., internal versus external pressure) and vary with Poisson’s
ratio, n. For a shell made of an incompressible material (i.e., n = 0.5), the overall
shell volume must be preserved, which suggests that changes, ∆b, of the outer radius,
b, are accompanied by corresponding changes, ∆a, of the inner radius, a:
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(1)

Since b/a ≥ 1, equation 1 suggests that ∆b/∆a ≤ 1, independent of loading (i.e.,
whether the inner or outer surface is pressurized).

On the other hand, for 0 ≤ n < 0.5, the stress–strain relations are coupled and local
volume changes can occur. Thus, the in-plane strains depend on both in-plane and
transverse normal stress components, which is reflected in changes in the effective
stiffnesses of circular cylindrical arches and of spherical domes. Further, diffusion
of the displacements from a loaded surface (sometimes called geometric spreading)
suggests that the near displacement of a loaded surface should larger than the far
displacement of the unloaded surface:

(2)

Clearly, the complete answers to the questions posed above are not easily and
intuitively obvious, and further investigation is needed to clarify the issue.

Pressurized circular cylinders

Consider a hollow circular cylinder of inner radius a and outer radius b, pressurized
on its inner surface by a uniform pressure pi and on its outer surface by a uniform
pressure po. The radial and circumferential pressures for this axisymmetric problem
are given in many places (e.g. [1–3]) as:

(3)

If the cylinder is long and a state of plane strain is assumed along the axis, the radial
displacement, uc(r), can be determined from:

(4)

Then the radial displacements for the two separate cases of internal pressure (only)
and external pressure (only) are found by substituting appropriate portions of equa-
tion 3 into equation 4, yielding:
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(5a)

and

(5b)

Note the different signs of these results, which provides one opportunity to explore
students’ physical intuition.

Now, all that is needed to compare the radial displacements at the inner and outer
surfaces is that equation 5a or equation 5b be evaluated at r = a and r = b, res-
pectively, and that the appropriate ratio be constructed. For the case of internal
pressure (only), that ratio is:

(6)

where r = b/a, that is, the ratio of the cylinder’s outer radius to its inner radius,
which perforce is such that r > 1. The relative size of the two displacements can be
gauged according to whether the ratio Rci exceeds unity or not. The boundary for
that measure is:

(7a)

which has two roots:

(7b)

The first root has no physical significance since the physics of the problem require
that r > 1. Further, since

it follows that the ratio Rci always decreases with r, and hence uci(b) < uci(a), that
is, the displacement at the outer radius is always smaller than that at the shell’s inner,
loaded radius.

For the case of external pressure (only), the ratio of inner and outer radial dis-
placements is:

(8)

The assessment of the magnitude of the ratio Rco with r is not quite as straightfor-
ward as in the previous case. The relative size of the two displacements can again
be gauged according to how the ratio Rco compares to unity. In this case the bound-
ary for that measure is:

(9a)

which has two physically tenable roots:
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(9b)

Since

then Rco > 1 for thinner cylinders, for which 1 < r < 1/(1 − 2n), and Rco < 1 for
thicker cylinders, for which 1/(1 − 2n) < r. Further, Rco reaches a peak value of
1.107, when . Thus, the displacement at the inner radius
is always greater than that at the shell’s outer, loaded radius for relatively thin cylin-
ders, but it is always smaller than that at the outer radius for thicker cylinders.
Indeed, the analysis clearly shows that as the outer radius increases indefinitely, the
displacement at the inner radius tends to zero. In other words, a pressure applied at
an infinitely large radius does not affect the inner radius at all.

Pressurized spheres

Consider now a hollow sphere of inner radius a and outer radius b, pressurized on
its inner surface by a uniform pressure pi and on its outer surface by a uniform pres-
sure po. The radial and circumferential pressures for this spherically symmetric
problem are [4]:

(10)

The radial displacement, u(r), is determined from:

(11)

The radial displacements for the two separate cases of internal pressure (only) and
external pressure (only) are found by substituting appropriate portions of equation
10 into equation 11, yielding:

(12a)

and

(12b)

Note here, too, the difference in sign between these two results, replicating the results
for cylinders presented in equation 5.
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Once again, all that is needed to compare the radial displacements at the inner
and outer surfaces is that equation 12a or equation 12b be evaluated at r = a and r
= b, respectively, and that the appropriate ratio be constructed. For the case of inter-
nal pressure (only) on the sphere that ratio is:

(13)

where r = b/a is the ratio of the sphere’s outer radius to its inner radius and, again,
r > 1. The relative size of the two displacements can once again be gauged accord-
ing to whether the ratio Rsi exceeds unity or not. The boundary for that measure is:

(14a)

which can be partially factored into the form:

(14b)

Obviously, one of the roots of equation 14b is r = 1. The other two roots are real
but have no physical significance because one is negative and the other is less than
unity, which violates the requirement that r > 1. Since

it follows that the ratio Rsi always decreases from unity as r increases, hence usi(b)
< usi(a), that is, the displacement at the inner radius is always greater than that at
the shell’s outer radius.

Thus, for the case of external pressure (only) on a sphere, the ratio of inner and
outer radial displacements is:

(15)

The assessment of the magnitude of the ratio Rso with r is not quite as straightfor-
ward as in the previous case. The relative size of the two displacements can again
be gauged according to how the ratio Rso compares to unity. In this case, the bound-
ary for that measure is:

(16a)

which can also be partially factored as follows:
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As before, one of the roots of equation 16b is r = 1. Another of the roots is nega-
tive and thus of no interest. The third and final root is:

(17)

For 1 < r < r3, since

Rso > 1, and the displacement at the inner radius is greater than that at the outer,
loaded surface. Rso reaches a peak value of 1.181 when r = rcr = ((1 + n)/(1 − 2n))1/3

= 1.481 (n = 0.30).
For r > r3, Rso < 1, and the displacement at the inner radius is smaller than that

at the outer, loaded surface, and, as the outer radius increases indefinitely, the dis-
placement at the inner radius tends to zero. In other words, a pressure applied at an
infinitely large radius will not affect the inner radius at all.

Conclusions

The displacements for thick, elastic cylinders and spheres under internal and exter-
nal pressures were calculated and presented. Analyses of the surface displacements
demonstrated that predictions of their relative magnitudes are not easily made. Thus,
such analyses may be useful for teachers of elementary and advanced courses in the
strength of materials to help students test and improve their physical intuition.
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