
ORIGINAL PAPER

Daniel D. Frey Æ Clive L. Dym

Validation of design methods: lessons from medicine

Received: 17 March 2005 / Revised: 15 January 2006 / Accepted: 10 April 2006 / Published online: 25 May 2006
� Springer-Verlag London Limited 2006

Abstract This paper discusses the validation of design
methods. The challenges and opportunities in validation
are illustrated by drawing an analogy to medical re-
search and development. Specific validation practices
such as clinical studies and use of models of human
disease are discussed, including specific ways to adapt
them to engineering design. The implications are ex-
plored for three active areas of design research: robust
design, axiomatic design, and design decision making. It
is argued that medical research and development has
highly-developed, well-documented validation methods
and that many specific practices such as natural experi-
ments and model-based evaluations can profitably be
adapted for use in engineering design research.

Keywords Validation Æ Design methodology Æ Robust
design Æ Design decisions

1 Introduction

The validation of design methods is important for the
continuing advancement of both design theory and the
professional practice of engineering. Researchers in de-
sign theory require validation processes to guide the
development and evaluation of new methods. Profes-
sional practitioners need validation processes to deter-
mine which methods to employ, as well as when and
how to employ them. The latter is especially important
in large, complex organizations such as automobile and

airplane manufacturers and in their government coun-
terparts (e.g., NASA). Early-stage design decisions are
characterized by uncertainty and ambiguity and, espe-
cially in large organizations, later design decisions are
made through processes involving teams with a variety
of experiences, skill, and information. In such circum-
stances, it can be challenging to establish the benefits of
new methods.

This paper explores the topic of validation through
an analogy with medical research and development. The
principal audience is design researchers although it is
hoped that policy makers and industry practitioners may
also find the discussion useful. Section 2 reviews the
literature on validation in the context of design meth-
odology. Section 3 introduces an analogy between design
methods and medical treatments. Section 4 considers this
analogy in the context of three active research topics in
engineering design, and some concluding remarks are
presented in Sect. 5.

2 Literature review

2.1 Validation of design knowledge

This paper is concerned with the validation of claims to
knowledge in and about engineering design. This subject
can be viewed as a specialized topic within epistemol-
ogy—the branch of philosophy concerned with the
nature of knowledge, the justification of knowledge, and
the nature of rationality. There are three prominent
contemporary views of the justification of knowledge
claims (Audi 1995):

• Foundationalism holds that some instances of
knowledge are basic and that the remaining instances
are justified by relating them to basic beliefs (e.g., by
deduction from axioms);

• Relativism argues that knowledge cannot be validated
in an objective way and that individual, subjective
preferences and rules of fraternal behavior among
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scientists must be considered a part of validation
processes; and

• Naturalistic epistemology promotes empirical study of
how subjects convert sensory data into theories.

Schön suggested that engineering design and related
professions such as architecture and management have
created a demand for an epistemology of practice (Schön
1983). Schön conducted field studies of engineers and
other professionals and noted that skilled practitioners
frequently rely on tacit knowledge that cannot easily be
codified. Dym (1994a, b) has made similar arguments
about the difficulty of representing and articulating de-
sign knowledge. Argyris called the set of tacit knowledge
driving one’s professional work a theory-in-action,
which, he noted, often failed to match the espoused
theory of the discipline or practice (Argyris 1991). Schön
and Argyris (1975) proposed a framework for evaluating
theories related to professional practice that included
checks on: (1) internal consistency, (2) congruence with
the espoused theory, (3) testability of the theory, and,
ultimately, (4) effectiveness of the theory. They further
argue that a theory-in-action is:

• Testable if one can ‘‘specify the situation, the desired
result, and the action through which the result is to be
achieved,’’ and

• Effective when ‘‘action according to the theory tends
to achieve its governing variables.’’

Pedersen et al. (2000) proposed a similar framework in
which design theories are subjected to a validation
square of four quadrants, each representing one of the
following design dimensions:

1. Theoretical structural validity.
2. Empirical structural validity.
3. Empirical performance validity, and
4. Theoretical performance validity.

Thus, Pedersen et al. (2000) and Argyris (1991) and
Schön (1983) all suggest a balanced approach that in-
cludes the evaluation of internal consistency and effec-
tiveness. One key difference is that the framework of
Pedersen et al. is more nearly aligned with relativist
epistemology: they define scientific knowledge within the
field of design as socially justifiable belief. The validation
square does balance this relativistic definition of
knowledge with use of empirically-based notions of
validity. An objective of the present paper is to explore a
more objectivist foundation for validation of design
methods.

A distinctly different framework was suggested by
Simon, who proposed that ‘‘human rational behavior is
shaped by a scissors whose two blades are the structure
of task environments and the computational capabilities
of the actor’’ (Simon 1990). Simon emphasized the fit
between problem-solving behaviors and the problem
environment, rather than the internal consistency of the

behaviors. This concept is sometimes called ecological
rationality because it implies that knowledge—as in-
ferred from behavior—should be judged by a fit with the
environment (Todd and Gigerenzer 2003). Simon’s view
of rationality is generally aligned with naturalistic epis-
temology since it has a basis in empirical studies of
agents.

2.2 Validation of methods

Engineers frequently seek to evaluate a design method or
software tool for a specified use or range of uses. The
Institute of Electrical and Electronics Engineers (IEEE
1998) defines validation as the ‘‘confirmation by exami-
nation and provision of objective evidence that the par-
ticular requirements for on intended use are fulfilled.’’ As
will be discussed in Sect. 3, this paper will seek to build
upon the IEEE definition showing it is closely related to
that of the Food and Drug Administration.

Olewnik and Lewis (2005) propose an alternative
definition of validation (applicable to decision support
methods and design methods) wherein, for a method to
be valid, it must:

1. Be logical;
2. Use meaningful reliable information; and
3. Not bias the designer.

One desirable property of this definition is that it
reveals the ways that some design methods impose
preferences on the designer. However, a potential
drawback of Olewnik and Lewis’ definition is that
invalidity ‘‘does not imply that the methods are inef-
fective.’’ By contrast, the IEEE definition emphasizes a
link between validation and an assurance of effectiveness
for its specific intended uses.

Todd and Gigerenzer (2003) have proposed still a
different way of validating decision methods (generally
aligned with naturalistic epistemology) comprised of the
following steps:

1. Proposing computational models of candidate
methods that are realistically based on human com-
petences, and testing whether they work via simula-
tion;

2. Mathematically analyzing when and how the meth-
ods work with particular environmental structures;
and

3. Experimentally testing when people use these methods.

This approach to validation was applied to many
decision scenarios resulting in the conclusion that ‘‘there
is a point where increasing information and information
processing can actually do harm.’’ One specific example
is that a ‘‘Take The Best’’ heuristic equals or outper-
forms any linear decision strategy because decision cues
are frequently non-compensatory, that is, the potential
contribution of each new cue falls off rapidly so that
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combinations of later cues cannot outweigh earlier ones
(Todd and Gigerenzer 2003). This empirically observed
effect, sometimes called the ‘‘less is more’’ effect, is
particularly of interest in light of Olewink and Lewis’
proposed criteria of validity (Olewnik and Lewis 2005).
Todd and Gigerenzer (2003) have provided well-docu-
mented examples in which inclusion of valid information
into a decision process causes worse decision outcomes
rather than better ones.

2.3 Validation of models

Engineers frequently seek to evaluate and apply a model
for a specified use or a range of uses. The American
Institute of Aeronautics and Astronautics (AIAA 1998)
defines model validation as ‘‘the process of determining
the degree to which a model is an accurate representa-
tion of the real world from the perspective of the in-
tended uses of the model.’’ Much work has been done to
practically implement a system of model validation
consistent with the AIAA definition. For example,
Hasselman has proposed a technique for evaluating
models based on bodies of empirical data (Hasselman
2001; Hasselman et al. 1998).

Hazelrigg (2003) proposed an alternative definition of
model validity from the perspective of decision the-
ory—a model is valid to the extent that it supports the
conclusion that ‘‘design point O will produce an out-
come that is preferred to the outcome that would be
produced by design point C with essentially probability
1.’’ This definition of validity prizes resolution over
accuracy. One desirable property of Hazelrigg’s defini-
tion is that a relatively inaccurate model may be viewed
as valid for making choices among alternatives when one
of the alternatives is vastly preferred to the others. Ha-
zelrigg’s view of model validation is, in some ways,
foundationalist, since it seeks to maintain traceability to
basic knowledge, in this case to classical decision theory.
However, the framework also embraces some elements
of subjectivity since, according to Hazelrigg, ‘‘a model is
valid when, in the mind of the decision maker, it’s up to
the task.’’ The AIAA definition, by contrast, emphasizes
an objective correspondence of a model with data.

McAdams and Dym (2004) have also discussed the
validation of models in engineering design, drawing on
analogies and procedures used in mathematical model-
ing (Reich 1994), while also observing that ‘‘design
models operate on information to produce informa-
tion.’’ This, of course, leads one to ask, ‘‘What is
information?’’, a question to which many answers have
been offered (e.g., see McAdams and Dym 2004). Ha-
zelrigg defined information as ‘‘what [a] decision is made
on,’’ and noted that it can be quantified in terms of
probabilistic outcomes of specific decisions. But, as
McAdams and Dym noted, there are many aspects of
design (e.g., concept generation and synthesis) that are
poorly modeled when modeled only as decisions
(McAdams and Dym 2004).

2.4 Validation of design research methodology

The engineering design research community also has a
need to evaluate research programs and their results.
Therefore critical analysis of research methodology has
periodically been pursued and has been a healthy part of
our community’s development. Reich (1994) analyzed
the status of research methodology in artificial intelli-
gence for engineering design. His conclusion was that
the status is ‘‘poor’’ partly because ‘‘it makes claims far
beyond what other disciplines dream of making’’ and
that ‘‘the need for reflection is not taken seriously in
AI.’’ As an antidote to these ills, Reich proposed a
layered model of research methodology. The first layer
differentiates research methods according to their
metaphysical stance. The two options in this layer were
scientism which is based on an objectivist epistemology
and practicism which is based on a subjectivist episte-
mology, tempered to avoid misuse. The second layer
concerns research heuristics that characterize different
communities, such as cognitive science, decision science,
and software engineering. The third layer concerns the
most specific issues of hypothesis evaluation including
statistical testing and assessment of parsimony. The
goals of the present paper are quite similar to those of
Reich (1994) but the position taken here and to be
developed subsequently is substantially different. Reich
says of the scientist/objectivist view ‘‘we have witnessed
its demise in philosophy.’’ Our view is that it is pre-
mature to dismiss an objective basis for evaluating de-
sign research, methods, or models. At the same time, the
concept of layered evaluations and many of the specific
suggestions Reich makes are strongly endorsed, espe-
cially ‘‘if the purpose is improving practice, then a study
that illustrates such improvement should be furnished’’
(Reich 1994).

2.5 Needs analysis

A review of the literature reveals a substantial range of
opinion regarding validation in design theory. On the
other hand, engineering’s professional societies have
been fairly consistent in other matters in seeking vali-
dation based on the provision of objective evidence.
However, these same professional societies have not yet
explicitly applied these concepts to design methods and
theories. If the engineering profession does choose to
extend an objective concept of validation to design
methods and tools, it will need a supporting set of
practices and standards for the provision of evidence.
Questions such as the following will have to be an-
swered:

• Can theoretical arguments alone serve to validate a
design method or theory, or must they ultimately be
validated experimentally?

• What kinds of experiments provide valid evidence of
effectiveness for an intended use?
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• Can design method validation be made economically
viable by improvements in speed and efficiency?

In connection with these questions, it is worth noting the
recent study by Dorst and Vermass (2005), which ana-
lyzes Gero’s function–behavior–structure model. Dorst
and Vermass (2005) point out that many difficulties arise
when one tries to match empirical (or experimental) re-
sults against models and theories, including the lack of
clear criteria for matching the ‘‘quality’’ of models with
‘‘validating’’ empirical data, and indeed, whether models
can be defined or specified sufficiently to be observed in
the laboratory (or in practice.)

The principal goal of this paper is to provide some
practical answers to these (and other) questions by
drawing on the experience of another profession, medi-
cine, which has faced similar questions and answered
them with a substantial degree of success. In subsequent
sections, it is argued that medical research and devel-
opment has highly-developed, well-documented valida-
tion methods and that many specific practices such as
natural experiments and model-based evaluations can
profitably be adapted for use in engineering design re-
search.

3 The medical treatment–design method analogy

3.1 Introducing the analogy

The professional community involved in medical re-
search and development has developed a set of well-
documented validation processes. The processes used in
medicine are far from perfect and many significant
mistakes are still made, both by releasing unsafe or
ineffective drugs or by withholding effective treatments
too long. Still the practices applied in medicine possess
many positive attributes from which much can be
learned. In an effort to draw out those lessons, this
section introduces an extensive analogy between medical
research and development, on the one hand, and design
theory and methodology, on the other, here called the
medical treatment–design method analogy.

The primary goal of medical research and develop-
ment is to develop treatments to be administered to hu-
man patients. The purpose of the treatment is to achieve
clinical outcomes related to improved health (e.g., low-
ering blood pressure). The treatments are developed
through academic research, or at pharmaceutical com-
panies, or both. Patients seek advice about treatments
from medical professionals and often gain access to such
treatments exclusively through them. Before a claim can
be made about a treatment’s effects, the 1962 amendment
of the Food, Drug, and Cosmetics (FDC) Act requires
provision of ‘‘evidence consisting of adequate and well
controlled investigations . . . that the drug will have the
effect it purports or is represented to have under the
conditions of use prescribed, recommended, or suggested

in the labeling or proposed labeling thereof’’ (U. S.
Federal Food, Drug, and Cosmetic Act, Chapter 9.V,
Sec. 355(d), http://www.access.gpo.gov/uscode/title21/
chapter9_.html).

The primary goal of design research is to develop
design methods to be learned and used by designers to
create engineering artifacts, usually within commercial
engineering enterprises. The purpose of a design method
is to achieve specific design outcomes (e.g., improved
profitability or better product quality and reliability).
The methods are developed by academic researchers,
industry practitioners, or by both. Engineering compa-
nies look to a variety of professionals (e.g., engineers.
statisticians, and managers) for advice about design
methods and for help in implementing them. Although
lacking the force of law, the IEEE definition of valida-
tion entails ‘‘confirmation by examination and provision
of objective evidence that the particular requirements for
an intended use are fulfilled’’ (Institute of Electrical and
Electronics Engineers 1998).

Table 1 summarizes the analogy just outlined, based
on the fact that both areas include professionals seeking
outcomes by applying treatments or methodologies that
might require validation. An important caution arises
from inspection of Table 1. If medical treatments are to
be compared with design methods, the most salient
differences between the two must be openly acknowl-
edged. Design methods almost invariably require sub-
stantial interpretation and judgment in their application.
This is true to a lesser extent with medical treatments.
Many drugs, for example, are either administered
according to the suggested dosage or not at all, leaving
little room for interpretation of what administration of
the treatment entails. Surgical procedures, on the other
hand, may vary substantially depending on the judg-
ment of the practitioner implementing them. Design
methods, it must be admitted, lie at an extreme of the
spectrum: the application of design methods depends

Table 1 An analogy between medical research and development
and design theory and methodology

Medical research
and development

Design theory and
methodology

What is validated Medical treatments Design methods
Entity affected Human patient Engineering

organization
Outcomes
evaluated

Health, side
effects, etc.

Quality, time
to market,
profitability, etc.

Developers Academic
researchers,
pharmaceutical
companies, etc.

Academic researchers,
industry practitioners,
consultants, etc.

Professions
involved

Medical doctors,
nurses,
technicians

Engineers,
statisticians,
managers

Standards for
validation

Food, Drug,
and Cosmetics
Act, and so on

IEEE definition
of validation,
and so on

48



strongly on judgment of the designer who applies them,
and their effectiveness is almost assuredly compromised
by poor implementation.

While the association among the entities compared is
not perfect, it is worth continuing the effort to extend the
medical treatment–design method analogy to compare
validation of medical treatments and validation of de-
sign methods. Validation requires that evidence be
provided. The types of evidence provided in medical
research and development are rich and varied. Table 2
(below) provides a partial list of the types of evidence in
used in medical research. The list is roughly structured
downward from the most comprehensive evi-
dence—clinical trials—through varying layers of sup-
porting evidence, each requiring more assumptions and
abstractions than the one above. All of the layers of
evidence are useful, but as will be discussed, there is a
hierarchy to the levels of evidence. The next five sub-
sections discuss each layer in detail and flesh out the
analogy with design theory.

3.2 Clinical trials

A clinical trial is the ultimate standard for validating the
effectiveness of medical treatments. The U.S. Food and
Drug Administration (FDA) has developed detailed
guidance for industry on the conduct of such trials
(Department of Health and Human Services—Food and
Drug Administration 1996, 1998a). Human subjects are
identified and allocated to different medical treatments
including the specific treatment to be studied and a
comparator (sometimes a placebo). The medical treat-
ments are administered, the effects are monitored, and
the outcomes are recorded. To avoid bias, the adminis-
tration of the treatments is usually blinded, often double
blinded so that neither the patient nor the physician-
researcher knows which treatments are given to which
subjects. Further, even though patients may volunteer
for or asked to be included in clinical trials, an
increasingly common experience in cancer treatments
wherein there are other ethical issues whose presence

must be acknowledged, the subjects in most clinical tri-
als do not get to choose their treatment(s). The health of
the subjects in the clinical trial is affected by a multitude
of factors that may not be controlled and/or may not be
monitored. For this reason, the data from clinical trials
is subject to careful statistical analysis (Department of
Health and Human Services—Food and Drug Admin-
istration 1998b), and adequate sample sizes are required
to reach conclusions with a satisfactory degree of con-
fidence. It should be noted that the requirement for
clinical trials does have negative consequences, such as
when treatments are withheld from patients that might
otherwise benefit from them. The point is not that the
methods are perfect nor that they are perfectly executed,
only that they are highly-developed and that much can
be learned from them.

Now, to explore the medical treatment–design
method analogy for validation, a ‘‘clinical trial’’ might
proceed as follows. Design problems would be identified,
perhaps as benchmark design problems, and then allo-
cated to different design methods or tools, including the
specific design method to be studied and a comparable
tool. (It is hard to identify a design equivalent of a
placebo here, although perhaps there is a design equiv-
alent of the medical admonition to do no harm that
could be brought into play). The design methods are
applied, the results are reviewed, and the design out-
comes are recorded. To avoid bias, the application of the
design methods ought to be done in some blinded
fashion, and while the ‘‘patient’’ or the design problem
can be oblivious to the ‘‘treatment’’ or the design
method being applied, the ‘‘physician-researcher’’ or
designer would have to know which method she was
applying, else she could not apply it! (On the other hand,
whereas subjects in most clinical trials do not get to
choose their treatment, designers—and analysts—often
recognize that some problems ‘‘beg for’’ certain solu-
tions or treatments.) The outcomes or solutions to the
design problem in the clinical trial may be affected by
other factors that cannot be readily controlled, although
it is more conceivable that problems and their solution
methods can here be more readily isolated. Nevertheless,
adequate sample sizes would still be required to reach
conclusions with a satisfactory degree of confidence.

Thus, a clinical trial for design methods could be an
experiment in which different methods are allocated to
organizations or to specific tasks therein. The resultant
effects on quality, profitability, or time to market might
be monitored and analyzed statistically. Such studies are
sometimes conducted and a recent example (Kunert
2004) will be discussed in Sect. 4.1. However, as fore-
shadowed just above, analogies of clinical studies for
engineering design raise several questions, including:

• How can appropriate (benchmark) design problems
be identified, articulated and represented. Moreover,
who should do that?

• Since designers—unlike their physician-researcher
counterparts—must be familiar with the design

Table 2 Types of evidence used to develop and validate medical
treatments and design methods

Evidence used to
develop/validate
medical treatments

Evidence used to
develop/validate
design methods

Clinical trials Controlled field evaluation
of design methods

Natural experiments Studies of industry practice
In vitro experiments Laboratory experiments

with human subjects
Animal models Detailed simulations

of design methods
Theory (organic chemistry,
genetics, molecular biology,
cellular biology, etc.)

Theory (probability, decision
science, cognitive science,
organizational behavior)
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method they are implementing, does it matter that the
process of blinding is likely impossible in this context?
If it does matter, how much?

• Since many engineering firms are unlikely to accept
and implement a design method not of their own
choosing, does it matter if the allocation of treatments
or design methods cannot be randomized? If it does
matter, how much?

• Can the costs of doing such research—over many
companies, designers, methods and products—be kept
sufficiently bounded that adequate sample sizes are
enabled?

The last question suggests that ways to make clinical
validation more efficient should be sought. One way to
reduce the cost—or shorten the time—in a clinical trial is
to use surrogate variables, that is, parameters that are
observed in place of the relevant clinical outcomes when
it is difficult to make a direct observation of effective-
ness. For example, it might take an overly long time to
demonstrate clinically that a drug reduces the long-term
risk of heart disease. Therefore, drugs are sometimes
approved if they can be shown to have an effect on
variables thought to be related to risk of heart disease
(e.g. blood cholesterol levels). However, ‘‘there have
been many instances where treatments showing a highly
positive effect on a proposed surrogate have ultimately
been shown to be detrimental to the subjects’ clinical
outcome’’ (U. S. Department of Health and Human
Services - Food and Drug Administration, 1998, Pro-
viding Clinical Evidence of Effectiveness for Human
Drug and Biological Products, http://www.fda.gov/cder/
guidance/idex.htm). Surrogate variables can be mis-
leading indicators of clinical effectiveness and no general
procedure for evaluating surrogate variables has yet
been broadly accepted in the medical community.

Similarly, surrogate variables may also be somewhat
helpful in validating engineering design methods. For
example, Olewnik and Lewis’ (2005) proposed criteria
for evaluating decision support methods could be viewed
as surrogate variables. It seems reasonable that a
method is more likely to be effective if it is logical, uses
meaningful, reliable information, and does not bias the
designer. However, as Olewnik and Lewis (2005)
acknowledged, these criteria do not ensure effectiveness
in practice.

3.3 Natural experiments

One alternative to a clinical trial, which is a controlled
experiment, is the so-called natural experiment in which
the consequences of different treatments are ob-
served—but without controlled administration of the
treatments. For example, in the first major study linking
smoking and lung cancer, 1,500 patients who had been
diagnosed with lung cancer and a similar-sized sample of
patients not diagnosed with lung cancer were surveyed
about their smoking habits. The result of the study was

that ‘‘smoking is a factor, and an important factor, in
the production of carcinoma of the lung’’ (Doll and Hill
1950). There was subsequent debate over the validity of
the study: since it was a natural—rather than con-
trolled—experiment, correlation had been statistically
established, but causation was less certain. The choice to
smoke or not was made by the subjects, and those who
choose to smoke are not an unbiased, random sample of
the population at large. The influence of such consid-
erations on inference should not be underestimated.
They prompted the statistician R. A. Fisher to con-
clude—regarding the cancer research—that ‘‘it is more
likely that a common cause supplies the explanation’’
(Fisher 1958). Subsequent studies have substantially re-
moved these doubts, establishing the causal link between
smoking and lung cancer without actually resorting to a
clinical study in which human subjects were forced to
smoke. Today, most medical scientists accept that cau-
sation can be established from natural experiments by
including (Hill 1966):

• An analysis of temporal relationship;
• Plausibility based on prior knowledge; and
• Coherence with other known facts.

It is interesting to consider what ‘‘natural experiments’’
might entail in design methodology. Every time a new
method becomes widely adopted by industry, there is an
opportunity for the design research community to learn
about its effectiveness and its side effects. For example,
many U.S. companies adopted design methods from
Japanese companies in the 1980s (e.g., Quality Function
Deployment aka, QFD). Many believe that these com-
panies derived benefits in quality, cost, and profitability.
A careful study of this ‘‘natural experiment’’ might have
more clearly established the effects of this ‘‘treatment’’
on the relevant outcomes. This idea will be explored
more fully in Sect. 4.3.

A useful augmentation to natural experiments and
clinical trials is meta-analysis: the combination of data
from several studies to produce a single estimate. Meta-
analysis employs statistical, multi-factorial methods in
which the treatment is one predictor variable and the
study is another predictor variable (Bland 1987). A
principal difficulty with meta-analysis is so-called pub-
lication bias. Studies which produce significant differ-
ences are more likely to be published than those which
do not (Easterbrook et al. 1991). Also, unfavorable re-
sults are left unpublished more frequently than favorable
results. Thus, in medical research it is advised that all
studies be used in any meta-analysis, both published and
unpublished, demanding that researchers seek out
studies through personal knowledge and intensive
investigation.

Design methods can also, in principle, be studied by
meta-analysis. As will be discussed in Sect. 4.2, meta-
analysis is used in design research, but more extensive
studies may be possible. Applications of different design
methods are frequently published and they could be

50



collected and subject to statistical analysis. However,
just as in medical research, publication bias is a real
concern. Many case studies are developed to illustrate
the successful use of a design method. This is a reason-
able practice as new methods are much more useful to
practitioners when accompanied by examples illustrating
successful outcomes. Publication bias is a natural con-
sequence of the dynamics of the publication process and
generally not evidence of deliberate attempts at decep-
tion. Nevertheless, and while difficult to accomplish,
adequate safeguards against bias must be made in meta-
analysis of case studies of engineering design method-
ology. In most cases, it is not possible to collect all of the
published and unpublished applications of a design
method. Further, if a subset of unpublished cases is
sampled, it would be difficult to avoid bias since engi-
neering firms will justifiably be concerned about dis-
seminating evidence of unsuccessful outcomes.

3.4 In vitro experiments

In many cases, applying an experimental medical treat-
ment to a human subject is not justifiable, but it may be
possible to apply the treatment to human tissues and
cells outside the human body. This type of experiment is
described as in vitro as opposed to in vivo. This ap-
proach avoids the risk of harming subjects, and some-
times enables closer observation of the effects and
mechanisms of the treatment. However, because the
tissues or cells are outside the normal context of their
existence, great care must be exercised in drawing
inferences about clinical effectiveness.

In design theory, human subjects are sometimes used
as subjects in laboratory experiments (e.g., Chakrabarti
et al 2004; Cacciabue and Hollnagel 1995). These are
analogous to in vitro experiments in medicine in the
following ways:

• The subject of the experiment is removed from the
usual context, in this case, the corporation where most
authentic engineering practice takes place.

• Cooperation of an entire engineering enterprise is
generally not needed. The human subjects can vol-
unteer individually.

• Closer observation and control of experimental con-
ditions may be possible.

Laboratory experiments with human subjects are cur-
rently providing insights into engineering design. How-
ever, there is a risk in extending results from laboratory
experiments to make inferences about engineering
practice. Macrocognition is a term that has been coined
to describe the cognitive functions performed in natu-
ral—versus artificial, laboratory—settings (Klein et al.
2003). Real-world settings require such activities as
problem setting, attention management, planning, and
adaptation/re-planning in ways that laboratories can
rarely simulate. As a result, tools developed based on

laboratory research, especially decision support tools,
often degrade performance, rather than improve it
(Klein et al. 2003).

3.5 Animal models

Animal models are another important tool in medical
research and development. An animal model is an
organism—often a mouse—selected or developed to
bear specific physiological similarities to humans with
specific medical disorders. A variety of animal models
exist for studying disorders of the heart, blood, brain,
eyes, and so on (Center for Modeling Human Disease,
http://www.cmhd.ca). The precise form of an appropri-
ate animal model is strongly determined by the medical
disorder being modeled. For example, to study attention
deficit hyperactivity disorder (ADHD), mice lacking a
specific gene encoding a mechanism regulating brain
chemistry, a dopamine transporter or DAT, have been
developed, thus the mice are called DAT knockout or
DAT-KO mice: ‘‘The preponderance of common sym-
ptomatologies between the DAT-KO mice and individ-
uals with ADHD suggests that these mice may... serve as
a useful animal model and as resource to test new
therapies’’ (Gainetdinov et al. 1999).

The use of animal models entails uncertainty due to
the inevitable differences between the animal and the
human. For example, of the DAT-KO mice, it is noted
that ‘‘despite the similarities between the mutant mice
and humans with ADHD-HKD, it is unlikely that their
phenotypes are completely identical’’ (Gainetdinov et al.
1999). In this regard, an animal model for medical re-
search and development is similar to an engineering
model for use in design. The model is intended to rep-
resent another entity, but does not represent that entity
in all regards. In fact, there are no universally accepted
procedures for validating animal models of human dis-
ease because the validity of the models is so closely
linked to the investigations to be conducted (S.L. Ad-
amson, personal communication).

Simon proposed a way to go about validation of
design methods that is similar to the practice of using
animal models in medicine (Simon 1996):

‘‘. . . there exist today a considerable number of
examples of actual design processes, of many dif-
ferent kinds, that have been defined fully . . . in the
form of running computer programs . . . Because
these computer programs describe complex design
processes in complete, painstaking detail, they are
open to full inspection and analysis, or to trial by
simulation. They constitute a body of empirical
phenomena . . . There is no question, since these
programs exist, of the design process hiding behind
the cloak of ‘‘judgment’’ or ‘‘experience.’’ Whatever
judgment or experience was used in creating the
programs must now be incorporated in them and
hence be observable.’’
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In effect, Simon is proposing that a computer simulation
of a design process stand in for the actual design process.
To be more precise, the argument is that a computer
simulated design scenario to which design methods
would be applied is a more apt analogy for an animal
model as used in medical research. In fact, the animal
model analogy suggests that a full correspondence be-
tween the simulation and the reality being modeled is
not required. Animal models such as DAT-KO mice
bear only a few selected similarities to humans with
ADHD. Similarly, simulations used in engineering de-
sign may bear only certain key similarities to real-world
design and still reveal interesting insights. This practice
is not uncommon for research in engineering design;
many papers use an approach in which computer sim-
ulations of design processes are used as a source of
epirical knowledge about design (Moss and Cagan
2004). Such studies do not necessarily require precise
models of cognitive processes of engineering designers.

Schön has proposed another means to test and use
methods, a practicum, rather than a computer simula-
tion (Schön 1983):

‘‘. . . a practicum ... is really a virtual world. A virtual
world in the sense that it represents the world of
practice, but is not the world of practice. . . ’’

Just as Simon proposed the computer simulation as a
model of real design, Schön has proposed another kind
of entity a bit closer to professional design practice. A
key difference in Schön’s practicum is that an actual
person has to carry out the design. Therefore a practi-
cum can assess a design method and the degree to which
it fits human cognitive and psychological attributes.
Using practica (or something very similar) is common in
research in engineering design; for example, researchers
often use classroom settings to evaluate design methods
(e.g., Wilkening and Sobek 2004; Reich et al. 2006).

3.6 Theory

The underlying theories of medical science such as
chemistry and biology play a pivotal role in the devel-
opment of new treatments. Because basic research cat-
alyzes new innovations, the developers of medical
treatments pay careful attention to research and even
make substantial investments in privately funded basic
research. However, in validation of medical treatments,
theory plays a surprisingly small role. Drugs are often
administered widely without full understanding of their
underlying mechanisms—as long as their effectiveness
can be established clinically. For example, it is known
that psycho-stimulants have a calming effect on humans
with ADHD. This effect appeared so logically inexpli-
cable that medical researchers referred to these calming
effects as paradoxical: seemingly self-contradictory, yet
nonetheless true (Gainetdinov et al 1999). Because the
value of the treatments was established clinically, the

prescription of psycho-stimulants to ADHD patients
continued despite the paradox. Meanwhile, animal
models were (and still are) being used in detailed inves-
tigation of the effects of psycho-stimulants on the brain
functions of DAT knockout mice, which may ‘‘provide
insights into the basic mechanisms that underlie the
etiology of this and other hyperkinetic disorders’’
(Gainetdinov et al. 1999). These investigations may
eventually lead to drugs that more specifically target the
relevant mechanisms to ADHD and therefore are more
effective and/or have fewer side effects.

The phenomenon of practical uses preceding
underlying theory is also common in engineering. The
founding of thermodynamics as a field was substan-
tially accelerated by the study of working steam en-
gines. The ability to make workable steam engines
preceded understanding of thermodynamics, not the
other way around as it is frequently assumed. Similarly,
many of the most useful innovations in design meth-
odology including robust design, lean manufacturing,
and QFD emerged from industry practice. Only later
were these practices studied by theorists. In some cases,
the innovations were refined based on the theory, but
just as often, theories had to be extended or even
revolutionized to accommodate the understanding of
the practice. The interplay of theory and applica-
tion—with applications often leading the way—is long
known, but too often forgotten. Design researchers
should certainly keep in mind the approach of medical
researchers. If theoretical investigations of a design
method seem to conflict with field reports about that
method, then the design methodology may still be valid
and perhaps the theory should be extended to include a
richer variety of considerations.

4 Implications of the analogy

This section considers validation in three different areas
of design theory and methodology—robust design, axi-
omatic design, and decision-based design—in order to
explore more thoroughly the medical treatment–design
method analogy.

4.1 Robust design

Robust design is a set of design methods in which
products and processes are made less sensitive to man-
ufacturing variations, customer use conditions, and
degradation over time. The techniques were first pio-
neered by Taguchi who, through his extensive work with
Japanese industry, developed a methodology (Taguchi
1987; Phadke 1989). Later, researchers and practitio-
ners—especially in statistics—developed new ap-
proaches intended to be more tightly linked to
mathematical theory, and especially to design of experi-
ments (DOE).

Design of experiments is a body of knowledge and
techniques for planning a set of experiments, analyzing
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the resulting data, and drawing conclusions from the
analysis (Wu and Hamada 2000; Box et al. 1978). DOE
in general—and fractional factorial design in particu-
lar—have been key theoretical foundations for devel-
opment of robust design methods. Both Taguchi
methods and newer techniques use fractional factorial
experiments, but in different ways. Recent theoretical
developments have led statisticians to discourage the use
of crossed arrays and encourage the use of a single array
including both control and noise factors (Wu and Ha-
mada 2000; Borror and Montgomery 2000). The justi-
fication is that ‘‘. . . some of the single arrays . . . are
uniformly better than the cross arrays in terms of the
number of clear main effects and two-factor interac-
tions’’ (Wu and Hamada 2000).

In robust design, the ‘‘clinical endpoint’’—what the
engineering organization wants—is improved system
performance in the presence of noise. Single-array de-
signs have been justified on the basis of the number of
clear effects and of control by nose interactions. One
may say that these properties are being used as surrogate
variables, and that the clinical endpoints should be
evaluated in a clinical trial. Such a trial was recently
conducted by Kunert et al. (2004). They used crossed-
array designs and single-array designs to improve the
consistency of a sheet metal spinning process. In effect,
this was a paired comparison experiment where the
experimental ‘‘treatment’’ was the design method em-
ployed. The result of the experiment was that the cros-
sed-array method led to process settings with a more
consistent profile of the sheet metal parts when com-
pared with the single-array method.

The ‘‘clinical trial’’ by Kunert et al. provides some
objective evidence validating the crossed-array method
and disconfirming the single-array approach to robust
design. However, this evidence is not conclusive. First of
all, the experiment included only one replication of the
paired comparison. If the exact same experiment were
repeated, the single array might have beaten the crossed
array simply due to random variations. Further, if the
same two methods were applied to some other engi-
neering system, say a lithography process rather than a
sheet metal spinning process, the single array may have
prevailed over the crossed array. A paired comparison in
a single instance of application does not provide as much
information as one would like to validate a design
method.

Now, let us consider how validation methods analo-
gous to those in medicine can be applied in robust de-
sign. As an example of meta-analysis, Li and Frey (2005)
conducted a study of experiments carried out in many
fields of engineering to ascertain the degree that system
regularities such as effect sparsity, hierarchy, and
inheritance were evident in the resulting data. Frey and
Li (2004) then conducted a model-based investigation of
crossed-array and single-array designs using a computer
simulation of robust design on a large number of sim-
ulated responses drawn from a third order polynomial
model of the system’s response. A crossed-array design

resulted in a standard deviation of the response sub-
stantially smaller than that provided by a single-array
design, although both methods were much better than a
‘‘placebo’’ (selecting control factor settings at random)
(Frey and Li 2004). These model-based results tend to
corroborate Kunert’s ‘‘clinical’’ study showing that the
single instance in the field was probably typical of the
population of realistic scenarios in the field.

The results in this section suggest that it is a mistake
to infer too much about robust design methods based
solely on mathematical theory. A similar conclusion has
been voiced by Box and Liu (1999). In recent decades,
the DOE research community has emphasized the
development of mathematically optimal experimental
designs which tend to be ‘‘one-shot’’ procedures. Such
designs are optimal within a formal axiomatic frame-
work, but Box has argued that, in practice, they
undermine the experimenter’s need to alternate between
forming hypotheses and conducting experiments (Box
and Liu 1999). Box further argued that this resulted in
less improvement of systems than would have been
achieved by iterative procedures (even though they are
partly heuristic). Box’s findings, if accepted, provide an
instance of overemphasis on mathematical theory lead-
ing to ineffective professional practice due to neglect of
relevant human factors.

4.2 Axiomatic design

Axiomatic design posits two ‘‘axioms’’: the indepen-
dence axiom and the information axiom (Suh 1990). The
full theory of axiomatic design, including theorems and
corollaries, is based on theorems whose validity, it is
said, relies on the validity of the axioms. Thus, axiomatic
design theory employs foundationalist epistemology. As
long as the axioms are valid and the other elements of
the theory are deduced from the axioms, it is proposed
that the theory is sound and useful for professional
practitioners. In particular, it is argued that the theory is
useful in the design of large scale systems along almost
all dimensions of their design and operation. That is,
axiomatic design claims to improve design, construction,
operation, modification, maintenance, documentation,
and diagnosis of system failures (Suh 1998).

Suh (1990) defines axioms as ‘‘truths that that cannot
be derived or proved to be true except that there are no
counter-examples or exceptions’’. This suggests that the
means to validate the axioms is to look for counter-
examples. However, Suh’s axioms are in the imperative
form. The independence axiom is ‘‘maintain the inde-
pendence of functional requirements.’’ It is not clear
what a counter-example to an imperative might entail;
the axiom is not testable—as defined by Schön (1983)
and Argyris (1991) and described in Sect. 2.1—because it
does not ‘‘specify the situation, the desired result, and
the action through which the result is to be achieved.’’

The clinical trial part of the medical treatment–design
method analogy suggests one testable hypothesis about
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axiomatic design. If training in axiomatic design is
viewed as a treatment, the hypothesis might be put forth
that providing training in axiomatic design to a group of
engineers will enable them to produce designs having a
higher ‘‘probability of success’’ than a group that re-
ceives training in another method (a comparator). By
devising a study to test this hypothesis, axiomatic design
might be objectively assessed. It might also enable the
assessment of how well axiomatic design theory can be
learned and implemented in practice. Such an investi-
gation would be very costly.

The natural experiment part of the medical treat-
ment–design method analogy suggests another ap-
proach. A software product, Acclaro, has been
developed to support axiomatic design and is currently
being marketed to engineering companies (Axiomatic
Design Solutions Inc. website http://www.axiomaticde-
sign.com/). In effect, a natural experiment is currently
underway. The company that sells the software lists
among its clients Ford Motor Company, Lockheed
Martin, Hewlett Packard, Saab Rosemount, and others.
Also listed is ASML, which acquired Silicon Valley
Group Incorporated—a company that was among the
first to use the software. A study of these companies
might reveal how this treatment has affected various
measures of their performance, such as product quality
ratings, time to market, profitability, market share, and
so on. Such a study could not provide a definitive
evaluation of the theory, but is essential to forming a
complete assessment.

The in vitro experiment part of the medical treat-
ment–design method analogy suggests still another
means of evaluating Axiomatic Design. A simulation of
a design process could be created to test a hypothesis
such as, ‘‘if a system design does not maintain the
independence of functional requirements, then the set of
requirements cannot be satisfied.’’ In fact, just such an
investigation was carried out. Human subjects were
asked to satisfy a set of n functional requirements using
a set of n design parameters for both uncoupled systems
and coupled systems of modest size (from n = 2 to
n = 5) (Hirschi and Frey 2002). The experiment showed
that human subjects could succeed in simultaneously
satisfying all of the requirements of both uncoupled and
coupled systems, but that the task completion time
scaled linearly for uncoupled systems and geometrically
for coupled systems. This investigation does not support
the idea that coupling must be avoided, but it does
provide empirical support for the idea that coupling has
some negative implications in system design.

The results in this section suggest that an axiomatic
approach to design theory development will, in some
instances, lead to logical or practical difficulties. If axi-
oms are stated regarding design, they may not be test-
able unless they are stated as empirical hypotheses. As
theorems are derived from the axioms, one must ensure
not only consistency with the axioms, but also consis-
tency with every fact of reality that bears on the theo-
rem, including human cognitive capabilities. Practices

from medical research and development may help avoid
such difficulties. Data should be collected from ongoing
natural experiments and laboratory experiments should
be used to further investigate the implications of the
theory.

4.3 Making design decisions

Designers frequently find themselves having to rank
objectives against one another, choose among alterna-
tive means for achieving functions, select from alterna-
tive design options, and generally make a wide variety of
design decisions (Dym and Little 2004). Many of the
tools used to help designers make such decisions have
become widely used, as well as often criticized. For
example, QFD is a method frequently used in the early
phases of product design (Hauser and Clausing 1988).
QFD was first developed at the Kobe ship yard in Japan,
then adopted by major Japanese companies and subse-
quently by a broad variety of companies in North
America and Europe. One primary goal of QFD is to
help companies align their designs with the ‘‘voice of the
customer.’’ One claim often made about QFD is that the
method encourages teamwork among engineers and
marketing professionals by providing immersion in the
specifications prior to design efforts and by setting
appropriate technical targets for mature products (Dym
and Little 2004). There is some empirical evidence that
suggests that QFD has not been correlated in the short
term with quality improvements, but that users never-
theless feel it has longer term benefits (Griffin 1989).

Meanwhile, QFD and similar decision-making tools
such as the pairwise comparison chart (PCC) and the
analytical hierarchy process (AHP) have been taken to
task by some mathematicians and design theorists. Saari
(2001) has investigated the mathematics of different
forms of voting and of related decision support proce-
dures. These investigations have brought to light unde-
sirable properties the methods exhibit under certain
circumstances. Hazelrigg (1998, 1999) has argued that
all of these methods are simply wrong because they
violate tenets of decision theory. One specific conclusion
drawn by Hazelrigg is that industry should stop using
QFD. However, the framework for validation used in
medicine suggests that QFD should not be abandoned
so easily because the existing field data show some po-
sitive effects of QFD (Kuppuraju et al. 1985). Also, it is
not obvious that decision theory is an adequate model
for many forms of design decision making (Dym et al.
2002). Rejecting QFD because of Arrow’s theorem in
decision theory is akin to telling patients to reject med-
icines whose effects cannot be explained using current
knowledge of chemistry and biology. No medical treat-
ment can work except by a means that may ultimately be
subject to scientific explanation. However, in practice,
many effective medical treatments are discovered before
their relevant mechanisms are understood. Under cur-
rently accepted medical practices in the developed world,
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it is acceptable to market a treatment without a full
understanding of its underlying mechanisms as long as
the treatment’s safety and effectiveness can be clinically
established. Design researchers might conclude, at least
tentatively and cautiously, that QFD and similar tools
are currently the subject of field evaluation. At the same
time, design researchers, in collaboration with design
practitioners, should continue to investigate the mech-
anisms that provide perceptible benefits and simulta-
neously use theory to seek improvements. Reports from
industry practice suggest that the long term value of
QFD derives from factors such as cross-functional
coordination and information flow (Griffin 1989). The
medical analogy suggests that models should be devel-
oped that adequately represent these mechanisms, and
then these models should be used to test and refine our
decision making methods.

Although the medical analogy seems to suggest QFD
may continue to be used, the analogy also raises an
important issue concerning labeling. Over-the-counter
medications must carry carefully defined instructions for
their use. Without such labels, medicines would be less
useful and more dangerous. Such labeling has been
suggested for QFD through research in engineering de-
sign. Dym et al. (2002) suggest that QFD and related
methods can be used cautiously at early stages of design,
but should not be used as the sole means to establish a
single numerical rating that can then be used to choose a
single alternative. Further, specific cautions are made
against over-interpretation of numerical differences be-
cause so much of design knowledge is not amenable to
straightforward mathematical modeling (Dym and Little
2004; Dym et al. 2002). This paper suggests that
researchers in engineering design should pay close
attention to such instructions since they are an essential
part of the ‘‘treatments’’ being developed.

5 Closing remarks

The principal argument of this paper is that many of the
highly-developed validation techniques found in medi-
cine can profitably be used in engineering design re-
search. Validation of design methods is an important
topic for engineering design theory and practice. Every
engineer that designs products or processes uses some
design method or composite of methods. The design
methods now in use have an impact on all aspects of
success, including quality, performance, cost, and time
to market. Therefore, it seems reasonable to seek vali-
dation procedures for design methods that are as good
as the ones applied in developing medical treatments.
Inasmuch as medical treatment is so widely viewed as
important, the associated validation procedures are well-
documented, objective, and evidence-based. New treat-
ments must provide proof of their effectiveness before
they can be deployed widely. This proof is built up of
many layers, including basic theory in chemistry and

biology, in vivo experiments with animal models, clinical
trials with human subjects, and natural experiments.

Model-based validation is one of the techniques we
most strongly encourage design researchers to adopt. In
medicine, tremendous investments are made in creating
animals that reasonably model aspects of human dis-
ease. Similar efforts might be made to create models of
engineering design processes for the explicit purpose of
evaluating design methodologies. As discussed in Sect.
4.1, some small scale examples have been carried out in
robust design, but much more may be possible with
concerted effort.

Another practice in medicine worthy of consideration
is the careful collection and analysis of field data as new
treatments are introduced. Similar natural experiments
in engineering design are ongoing every time a new
method is adopted widely in the field. It is essential that
design researchers work to collect data and include
analysis of such data in evaluations of methods such as
QFD, Pugh controlled convergence, Taguchi methods,
and Axiomatic Design. All of these methods have seen
substantial use in the authentic context of industry
practice. At this point, any broad statements about ei-
ther their validity or inherent flaws must be interpreted
in light of what has actually transpired.

In addition to these concrete suggestions for design
research practice, a more philosophical point may also
be made regarding the role of foundations in our field.
In both medicine and in engineering design it has fre-
quently been observed that as the many layers of evi-
dence are traversed, surprising discoveries are made.
Developments based on theory alone may prove to be
ineffective in practice. Despite this fact, the field of de-
sign research has, at times, taken an exaggerated stand
regarding theoretical foundations—that as long as con-
sistency with first principles can be maintained, then
good methodology is likely to result. Leonard Savage, in
developing an axiomatic basis for statistics and decision
making, provided a caution against this approach and
suggested a more balanced view of the interactions be-
tween foundations and professional practice:

‘‘It is often argued academically that no science can
be more secure than its foundations, and that, if there
is controversy about the foundations, there must be
even more controversy about the higher parts of the
science. As a matter of fact, the foundations are the
most controversial part of many, if not all, sciences...
As in other sciences, controversies about the foun-
dations of statistics reflect themselves to some extent
in everyday practice, but not nearly so catastrophi-
cally as one might imagine. I believe that here, as
elsewhere, catastrophe is avoided, primarily because
in practical situations common sense generally saves
all but the most pedantic of us from flagrant error...
Although study of the foundations of a science does
not have the role that would be assigned to it by naı̈ve
first-things-firstism, it certainly has a continuing
importance as the science develops, influencing, and
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being influenced by, the more immediately practical
parts of the science (Savage 1954).’’

It is hoped that this discussion of validation frameworks
in medical research will help the design research com-
munity continue and strengthen its approach to valida-
tion of design methods. Perhaps the practices from
medicine can help design researchers avoid the pitfalls
warned against by Savage and encourage a healthy
interplay between scientific foundations and profes-
sional practice.
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