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A review of the current state of the art of ground vibration propagation is presented 
herein. First the theoretical models of vibration attenuation are reviewed and then measure- 
ment techniques are discussed. Finally, measurement and theory are combined into 
predictive models, whose validity is discussed. 

1. INTRODUCTION 

An important environmental aspect of building and facility design is the evaluation of vibra- 
tion transmitted to the site, through the ground, from external sources. Such external sources 
may include highway traffic, surface and subsurface railways, and machinery in nearby 
locations. To properly predict excitation levels at a building due to such sources, one must 
be able to predict how much vibration, in terms of both levels and spectra, is transmitted 
through the ground from the source. 

The problem of predicting the transmission of vibration through the ground is complex 
[l-8]. The reasons for this complexity include the lack of a comprehensive understanding of 
soil behavior, the difficulty of determining accurate values of soil properties, and the difficulty 
of modeling precisely the sources of vibration and the resulting near- and far-field behavior. 
However, in spite of these and other obstacles, it is possible to make reasonable assessments of 
ground-transmitted vibration through a judicious use of the empirical and theoretical results 
that are available. 

In this paper a review is given of the current state of the art of vibration transmission predic- 
tion. It is important to bear in mind that the focus of this paper is not the prediction of levels 
due to a particular physical source, but rather is it the prediction of the transmission of ground 
vibration signals from any of a number of sources. 

The paper is organized as follows. The basic theoretical models for radiation damping 
(geometrical spreading) and material damping (energy dissipation) are discussed first. Then 
a precis of current measurement technology and procedure is given. In the next section a 
review and collation of published measured vibration datais presented, together with empirical 
attenuation models derived from these data. Finally, a few comments on future research 
needs are put forward. 

2. THEORETICAL RADIATION MODELS? 

One first needs to define the source of the vibration. In terms of trtic-induced vibration, 
for example, it is of particular importance whether the problem involves at-grade roadways, 
tunnels, or elevated structures. There are potential differences between these problems. The 
road .traffic produces ground waves on the surface as well as beneath the surface. and these 
waves are fundamentally different in character. The tunnel represents a source of vibration 

t An abbreviated version of this section has been published recently [9]. 
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that in principle will also produce surface and body (interior) waves, although for a buried 
source the strength and behaviour of the surface wave is not well understood. It seems likely 
that, if buried deep enough, the tunnel will excite principally body waves, and that likelihood 
can often be exploited. Further, an elevated structure can produce surface waves that, in the 
far-field of an ideal transmission path, display no geometrical spreading losses. 

It is worth noting that, of the literature available, a number of works contain excellent 
surveys of various facets of the problem and extensive lists of references. These include the 
reports of Crandall [3], Whiffin and Leonard [4], and Remington [lo]. 

2.1. SOURCES AND SPREADING 

The basis of almost all of the analytical work on sources and transmission paths in soils is 
contained within the pioneering work of Lamb who investigated the response of isotropic, 
homogeneous elastic half-spaces to various harmonic and impulsive loads. Indeed, although 
many special cases have been examined in the intervening years, the pattern of what can be 
done analytically lies along outlines developed in the early part of this century. By way of 
review, the principal features of the responses of an elastic half-space to point and line loads 
will be discussed briefly [l-3]. 

If an oscillating point load is applied to an otherwise unloaded elastic half-space, three 
types of waves will emanate from the loading point. One is a surface wave, termed a Rayleigh 
wave, whose horizontal and vertical amplitudes drop off exponentially with the co-ordinate 
normal to the surface, while, in the far field, it falls off with distance along the surface at a 
rate inversely proportional to the square root of the surface distance. The Rayleigh wave is 
the slowest of the three wave types, so it thus is the last to arrive at a remote surface station. 
The other two waves are termed body waves, one of which propagates at the longitudinal wave 
speed of an elastic solid, and whose vibrational motion is in the direction of propagation. The 
other body wave, a transverse wave, travels at the shear wave speed, which is intermediate 
between the longitudinal wave speed and the Rayleigh wave speed. Both body waves fall off 
in amplitude in a manner inversely proportional to the spherical distance from the source 
point when monitored in the interior of the elastic space. When monitored on the surface, the 
body wave amplitudes fall off in a manner inversely proportional to the square of the surface 
distance. Thus at large distances from the source point the body waves that will be seen at the 
half-space surface will be of much smaller amplitude than the Rayleigh surface waves. At 
points well below the surface, of course, the body waves are the predominant feature of the 
response. It is also of interest to note that, for a small rigid disk vibrating on a half-space 
surface, 67 % of the input energy goes into Rayleigh waves, 26 % into shear waves, and only 7 % 
goes into the longitudinal waves. 

If a line load is applied to the half-space, the response is then typical of cylindrical energy 
spreading: that is, in the interior, the fall off in amplitude of body waves is inversely propor- 
tional to the square root of the radial distance to the line source. On the surface; body waves 
would fall off in amplitude in a manner inversely proportional to the radial distance. The 
Rayleigh (surface) waves in this instance do not fall off with distance along the surface, and, 
for an ideal (undamped) solid, progress out to infinity with unchanged amplitude. 

For buried point and line loads or sources one would get, if the distance to the free surface 
is large enough for a far field to develop, the spherical and cylindrical spreading of the energy 
of body waves that is characteristic of the symmetries of such surfaces. Thus, for the point 
source, the amplitude of the waves falls off inversely as the spherical radial distance, while 
for the line load the amplitude is inversely proportional to the square root of the cylindrical 
radial distance. A buried source can also produce Rayleigh surface waves by reflection of the 
body waves at a free surface. Unless the source is very shallow, however, these surface waves 
will be relatively insignificant. 
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Now it ought to be noted that all of the above descriptions, which are summarized in 
Figure 1, are based on far-field analyses of elastic spaces, in responce to time-harmonic loads. 
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Figure 1. Summary of spreading attenuation characteristics for oscillating (a) point and (b) line loads 
applied to the surface of an elastic half-space. 

Thus, energy dissipation is ignored (that subject is taken up in the next section), as are the non- 
propagating near fields of these various sources and of the possible time dependencies of the 
loading. However, as one is generally interested in frequency responses within small band- 
widths, and as the time dependencies of the loads do not markedly change the geometric 
characteristics of the response, the above descriptions serve as adequate guides for most 
applications. 

Traffic-induced vibration emanating from tunnels and at-grade roadways may normally 
be modeled as a line source. Where an elevated structure is involved, however, a receiver 
point may be in any one of several source fields, depending upon the location of that receiver 
relative to the superstructure and to the individual piers. Thus, near a pier, one must contend 
with propagation, both far-field and near-field, from a point source. As one moves away from 
the elevated highway, say along a line normal to its axis, the point source near-field becomes 
of less significance, and the individual (pier) point far-fields “coalesce” so as to be seen as the 
far-field of a line source. Of course, if one moves far enough away from an elevated highway of 
limited extent, that source can be viewed again as a point source. Similarly, a single machine 
(e.g., a pile driver) or a road surface irregularity such as a pot hole may be viewed as a point 
source. 

Additionally, one always faces the problem of deciding what these field distances are, in 
relative terms. This means that one must be able to define a frequency band of interest and a 

TABLE 1 
Radiation (spreading) attenuation; 

A, = spreading attenuation = Slogx/x, 

Physical sources Model Wave 
Monitor 
location S 

Highway/rail line Line Rayleigh Surface 0 
footing array Body Surface 20 

Car in pothole, Point Rayleigh Surface 10 
single “el” footing Body Surface 40 

Tunnel Buried line Body Interior 10 
Buried explosion Buried point Body Interior 20 
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propagation wave speed, so that wavelengths can be calculated, which in turn allows ap- 
propriate comparison with source dimensions: e.g., the diameter of a pier footing and the 
spacing of piers. Spreading attenuation characteristics for practical physical sources are 
summarized in Table 1. In a later section some implications of applying these spreading 
formulae will be discussed in the light of current practice. 

2.2. DAMPING PROPERTIES OF SOILS 

This section is devoted to a discussion of the dynamic properties of various soils, particu- 
larly the damping (or energy dissipation) properties. This is an area where there is a dearth of 
hard information. There does seem to be reasonable information on longitudinal and shear 
wave speeds; there appears to be no consensus on the energy dissipation aspects. 

It is generally agreed that the decay in amplitude can be represented in the form (for orkly 
the damping decay) 

A(x) = A0 e-ax. (1) 
The controversial issue is the frequency dependence of the absorption coefficient, ~1. 

There appears to be little doubt that the damping must be frequency dependent, and the 
available data (e.g., see pp. 192-197 of reference [3], and pp. 25-27 of reference [?I), certainty 
bears this out. On the other band, whereas Barkan fl 1 presents the ar~ments for a viscous 
model of damping in which absorption is dependent on the square of the frequents and for an 
eIastic recovery model for dissipation in which absorption is linearly dependent on frequency, 
he also presents a table of values of absorption coefficients which are apparently independent 
of frequency! Some representative values are displayed in Table 2. 

TABLE 2 

u(ft-‘) a(m-‘> 
---_-ll~.. 

Water-saturated clay 0.01 z-0.037 0~040-@120 
toes and foessial soil 0.030 0.100 
Sand and silt 0,012 0.040 

With attenuation defined by the relation 
AT = -lOiog(~(x)/~(O))~ (dB), (2) 

one can combine equations (I) and (2) to calculate the damping attenuation as 

Ad = -lOloge-ZaX (dB), (3) 
which can be recast (by using standard properties of logarithms) in the form 

Ad = -IO (0.434)(-2orx) = 8.68~~ (dB). (4) 
Then, for example, it is possible to compute for the soils listed above the values of attenuation 
(the smaller absorption coefficient is used for clay); these are shown in Table 3. 

TABLE 3 

Frequency-independeflt damping attenuation 
~~~l~~at~d~~~ d&a provided by &&an [I 1) 

x (ftj 100 150 204, 300 
~ __._-p~~_I _ 

Adjay (dB1 IO.4 15.6 20.8 3I.2 

Ad---loess (dB) 26.0 39.0 52.0 78-O 

&--sand (dB1 I@4 Is-6 20.8 31.2 
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These are clearly very large values of attenuation, and it is difficult to accept them as being 
uniformly valid over all frequency ranges. The only support for this notion comes from two 
small experiments conducted by Barkan [1, p. 3461 in which he determined that over the 
frequency range 10 Hz <f < 30 Hz there was no substantial change in the absorption 
coefficient. 

An alternate approach, one that yields considerably more conservative results, is to assume 
that the absorption coefficient is linearly dependent on frequency [3, 61. Thus, one assumes 
that 

a = ?td/c, (5) 
where q is the (constant) loss factor and c is the appropriate wave speed: e.g., the longitudinal 
or shear speed, depending on the wave under consideration. The attenuation would then take 
the forms 

Ad = - 10 log ewzVKfxlC, 
(6) 

Ad = 2729rfxlc. (7) 
For longitudinal waves, which decay more slowly because of the larger wave speed, values 

of the attenuation were calculated forf= 4 Hz, and these are given in Table 4. In the above 
calculation the loss factors used were 0.50 for clay, 0.30 for the loess, and 0.1 for the sand. 

TABLE 4 

Frequency-dependent (linear) damping 
attenuation calculatedfor longitudinal waves 

at4Hz 

x w> 100 150 200 300 

Ad-clay (dB) 1.1 1.7 2.2 3.3 
Ahloess (dB) 1.2 1.8 24 3.6 
&-sand (dB) 0.7 1.0 1.4 2.0 

The assumed longitudinal wave speeds were 5000 ftjs (1524 m/s) for clay, 2800 ftjs (853 m/s) 
for loess, and 1500 ft/s (457 m/s) for sand. Because of the linear dependence of frequency, 
the very low value of attenuation displayed above will become comparable to the values 
presented earlier at frequencies of 40 Hz and higher. An alternate presentation of the damping 
of soils, in terms of the number of wavelengths from the source, is displayed in Figure 2. 

N=x/X: number of wavelengths 

Figure 2. Summary of dissipation attenuation for various soils based on nominal soil properties given in 
reference [6]. Ad = -lOloge-zn*(x/A) = 27.29q(N). 
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However, it must be recognized here that for a conservative estimate of low frequency vibra- 
tion impact, it is appropriate to assume that the damping attenuation is fairly small. 

3. INSTRUMENTATION FOR GROUND VIBRATION MEAtXJREMENTS 

This section is devoted to discussion of the principal types of instrumentation used to 
measure ground vibration. This review will be of value not only for its own sake, but will also 
assist in the interpretation of the data to be given in the next section, 

Most of the ground vibration data that will be discussed in the following section have been 
obtained by using one of two general instrumentation systems. The first system, popular 
with geologists and civil engineers, and often applied to the measurement of ground motion 
generated by blasting and pile driving, is the seismograph. The second system, widely used by 
acoustical engineers for the measurement of railway and roadway induced ground vibration, 
may be called the vibration level meter, or VLM. 

The primary difference between the two systems is that the seismograph displays actual 
ground motion, within the frequency and phase limits of the system, in the time domain, 
whereas dataobtained with a VLM is most often displayed as an r.m.s. level in the frequency 
domain, It should be pointed out that one is not limited to one system or the other. In practice, 
depending upon the application, combinations of elements of the two systems can be used. 
However, as mentioned above, this discussion is limited to the systems that are most commonly 
used. The important differences and limitations, which will be discussed further below, are 
(1) frequency response of the system, (2) transducer type, size and coupling to the ground, 
(3) detection circuitry and (4) display. 

3.1. SEISMOGRAPHS 

The basic seismograph is comprised of a triaxial transducer, amplifiers, and oscillograph. 
The entire system may be self-contained in a single unit, or the transducer may be separate, 
connected to the amplifiers and recording unit by a cable. The data output of the seismograph 
is a time history, on paper tape, of the ground motion, usually as velocity, in three per- 
pendicular directions. The normal convention used to describe the three components is 
r, radial (or sometimes I, longitudinal), u, vertical, and t, transverse. A typical seismograph 
record is shown in Figure 3. The time history signals shown in Figure 3 are linear in both 
amplitude and time. As can be seen, timing lines provide a reference for the determination of 
the principal frequency of motion. The amplitude is unrectified and the seismograph has been 
designed to represent the actual ground motion within the frequency, phase, and time 
response limits of the system. 

Figure 3. Time history velocity traces of blast vibration. 
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The frequency response of a typical seismograph is limited in the low frequency range by the 
transducer, and in the high frequency range by the oscillograph galvanometers. Generally 
the transducers operate above their natural frequency and are always highly damped. Common 
transducer resonance frequencies are between 2 Hz and 5 Hz with damping of some 55 % to 
70 % ofcritical damping. The low frequency 3 dB down point can be estimated by the following 
equation : 

.LdB) = ((21;: - 1) + d/(x: - II2 + l)“zJr, (8) 
wheref, is the natural frequency of the transducer, and ct is the transducer’s critical damping 
ratio. For example, if c, = 06 andf, = 2 Hz,_&_,,,, = 1.7 Hz. Transducers of this type are 
limited in maximum displacement based on dimension and geometry considerations. 
A limitation of less than 1 inch is not uncommon. In theory, the seismic mass of the transducer 
should remain stationary while the transducer housing (which in some cases is the entire 
seismograph) will follow the motion of the ground. 

It is obvious that at high frequencies the driving point impedance of the transducer housing 
will become significant when compared with the impedance of the ground. This usually 
occurs, however, at frequencies much higher than our typical range of interest. Some recent 
measurements of the absolute value of the driving point impedance of two different types of 
soils by White and Mannering [l I] provide valuable data for estimating this effect. Equation 
(9) says that the measured velocity, V, will be different from the actual ground velocity, V,,, if 
the mass impedance of the seismograph, jam, is similar to or greater than the driving point 
impedance of the soil, 2,: 

V = V0 Z&Z, + jam). (9) 
If one assumes a single unit seismograph of 35 lb, and uses this result of White and Mannering, 

who give a soil impedance at 100 Hz of approximately 570 p (lo5 (sfor both sand and 

clay, and assumes that Z, has the phase of a spring impedance [3], one then finds the measured 
velocity as V = 1.1 V,. Nevertheless, newer portable seismographs incorporate separate 
transducers which weigh much less than the seismograph mentioned above. In fact, some 
modern seismographs are designed with a transducer density similar to average soil densities 
to minimize transducer mounting problems. 

The high frequency response of the seismograph is limited by the oscillograph galvano- 
meters. The 3 dB down point can be estimated by the following equation: 

f(-JdB) = ((1 - 21;;) + d(l - Xi)* + 1)“2f,, (10) 
where [, is the critical damping ratio for the galvanometer, and& is the galvanometer’s natural 
frequency. A typical seismograph might have galvanometers with characteristics off, = 200 
Hz and [, - 0.6. In this case the useful frequency response would extend out to approximately 
230 Hz. Note that for 5, = I/& f _ , ( 3 dBj = f,. Figure 4 shows the frequencyresponse character- 
istics of a popular seismograph. 

3.2. VIBRATION LEVEL METERS 

The other systems which are widely used to measure ground vibration are those which are 
here called vibration level meters (VLM). These systems do not come in single unit packages, 
such as seismographs, but instead are comprised of a collection of equipment which may vary 
widely in characteristics. Still, there are certain standard elements to the VLM which are 
discussed here. In general the VLM system is similar to equipment used for acoustical measure- 
ments, but with a much lower frequency response. 

A general system which might be used to measure low level, low frequency ground motion 
would incorporate a high sensitivity piezoelectric accelerometer, voltage preamplifier and low 
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Frequency (Hz) 

Figure 4. Frequency response of a seismograph. 

pass filter, second amplification stage with l/3-octave band filters, and an r.m.s. rectifier and 
logarithmic display. Data can be directly obtained from this system or recorded on magnetic 
tape either by using an FM recorder or by speed scaling on an AM recorder. Tape recorded 
data can then, of course, be analyzed in either the time domain or the frequency domain, or 
both. 

The low frequency response of the VLM is limited by the electrical damping constant 
created by the preamplifier resistance, fit, and the total capacitance, C, of the preamplifier, 
cable and accelerometer. The 3 dB down point can be calculated from the familiar formula 

f<+dB) = lf2nRC. 01) 
By properly selecting the accelerometer and preamplifier, the low frequency response can 

be extended down to the limitations imposed by the amplifier. in general, popular amplifier 
units used as part of a VLM are limited in the low frequency response below about 2 Hz. 
Accelerometers operate below their natural frequencies, which may vary from 500 Hz to 
50 kHz, and they are generally lightly damped. Therefore, to avoid high frequency overload- 
ing and to improve the signal-to-noise ratio, a low pass filter is often employed. A simple 
filter which drops off at 6 dB per octave above 250 Hz would be capable of eliminating the 
resonance effects of most, but not all, accelerometers. 

To measure vibration which has extremely low amplitudes, a very sensitive accelerometer 
must be employed and a noise floor measurement (either by isolating the accelerometer or 
by using an equivalent capacitance dummy transducer) should be made. By properly selecting 
components, one can assemble a VLM capable of measuring levels well below the human 
threshold of perception for whole body vibration. (It should be noted that equally sensitive 
seismographs are also available.) It is also worth noting that most VLM measurements are 
made in one direction at a time; triaxial accelerometers are available but would require three 
separate amplification channels. 

There are no standard ground mounting techniques for accelerometers. Seismographs, if 
they are the single unit type, are merely leveled on the ground, and if the acceleration does not 
approach something less than 1 g, respond with the ground motion within the limits mentioned 
above. For the newer seismographs, with matching soil density transducers, a small hole is 
excavated and the transducer is buried in it. The accelerometers discussed here are much 
smaller than the transducers used with seismographs. The advantages of a small accelero- 
meter for measuring vibration of lightweight structures are of little benefit for measuring 
ground vibration. In fact, accelerometers are generally attached to a larger structure such as 
a wedge, a rod, or a plate, which in turn is secured to the ground. Of course, these larger 
structures must be selected with care to insure good coupling to the ground while avoiding 
the point impedance problem mentioned earlier. 

Data is most often displayed as the r.m.s. acceleration level on the logarithmic face of the 
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VLM. The ratio between the peak level and r.m.s. level of an oscillatory motion is called the 
crest factor. The crest factor must be known or estimated to compare data from the VLM 
with that from the seismograph. For sinusoidal motion it is well known that the crest factor 
is 1.414 or 3 dB; however, for random vibration, and in particular for impact, the crest factor 
may be on the order of 5 to 20 dB. For impulsive vibration with large crest factors there are 
two problems that may arise when an r.m.s. meter is used: (1) the input amplifiers may be over- 
loaded even when the r.m.s. meter reading is on scale; and (2) the (statistical) confidence in the 
displayed r.m.s. value decreases rapidly as the signal duration decreases. This latter point is 
particularly important for narrow band analysis. To avoid these problems, which principally 
occur for impact measurements, one should select a peak reading meter rather than an rms 
meter. For the types of vibration measurements discussed here this refers primarily to blast 
and pile driving generated vibration. 

Figure 5 shows the frequency response for the typical VLM system discussed above. 

Frequency (Hz) 

Figure 5. Frequency response of a vibration level meter. 

4. MEASUREMENTS OF GROUND VIBRATION ATTENUATION 

The propagation of man-made ground vibration in the frequency range of 1 to 200 Hz has 
been of interest to scientists and engineers for some time. In particular, considerable data has 
been obtained for vibration generated by blast and by pile driving. More recently, attention 
has been turned to the problems of vibration induced by rail and roadway traffic. Generally 
this data has been obtained to predict or avoid vibration effects such as building damage, 
perceptible motion, interference with sensitive equipment, radiated sound, and soil settlement. 
The instrumentation chosen to measure ground vibration depends largely on the particular 
effects to be studied, the wave characteristics and the governing criteria. For example, the 
U.S. Bureau of Mines has published a “safe blasting limit” in terms of “peakparticlevelocity 
as measured from any of three mutually perpendicular directions in the ground adjacent to a 
structure” to avoid major and minor structural damage [12]. In this case a three-channel 
peak-reading velocity meter with a triaxial transducer is required. The seismograph mentioned 
earlier is ideally suited for these types of measurements. 

On the other hand if the issue is human perception of ground motion, and if the motion is 
expected to be broad band in nature, one would employ an instrument capable of frequency 
analysis, such as the vibration level meter. This is due to the frequency dependence of the 
human threshold of perception to whole body vibration. (It should be noted that over certain 
frequency ranges the human threshold can be approximated by a constant velocity [ 131.) 

4.1. BLAST GENERATED VIBRATION 

In Bulletin 656 [12], the U.S. Bureau of Mines analyzed vibration data obtained for 171 
blasts at 26 quarry sites to determine, among other things, a propagation law for groundborne 
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Surface vibration. The instrumentation used had characteristics similar to those ofa seismo- 
graph. While some spectral analysis was performed, in general the quantity sought was the 
peak particle ground velocity. A propagation law of the form 

V=kxS (12) 
was assumed, where Vis peak particle velocity, x is distance, and k and B are constants which 
were determined by a standard regression analysis. It was determined that the propagation 
laws for the three orthogonal directions, r, u and t, were statistically different and required 
separate descriptions. The resulting propagation laws are 

V, = k, x-1.63, (13) 

V, = k, x-‘.73, (14) 

Vt = k, x-1’28. (15) 
The standard error estimates for the three coefficients above are So, = 0.0043, &,, = 0.0049 and 
SUt = 0.0063. The geological conditions at transducer locations varied greatly, ranging from 
exposed bedrock to 56 ft (17 m) of overburden. 

4.2. VIBRATION DUE TO PILE DRIVING 

In pile driving vibration, as in blast generated vibration, the quantity sought is often peak 
particle velocity. In this case it is almost always true that the vertical vibration component 
will greatly exceed the radical and transverse components. (This, of course, cannot be generally 
stated for blast generated ground motion.) Consequently, it is the vertical component which 
is of primary interest in piling vibration. Again a propagation law of the form given in 
equation (12) is assumed, and the specific constants are determined by regression analysis. 
(When the results from various pile drivers are compared, it is the scaled distance x/Gwhere 
E is the energy rating of the driver, that is plotted against peak velocity.) Measurements 
reported by Attewell and Farmer [14] for a wide variety of soil types, including both sandy and 
clayey soils, best fit a curve of the form 

v = /&-O.*‘. (16) 
These authors go on to argue that their data and that of others suggest that B = -1.0 is a good 
approximation over a wide variety of soil types. One other interesting result presented in that 
paper can be seen in the profiles of surface wave particle motion at 33 ft (10 m), 66 ft (20 m) 
and 98 ft (30 m) from a driven sheet pile. As might be expected, there is considerable confusion 
at 33 ft ; however, by 98 ft a very clear retrograde ellipitcal pattern, typical of Rayleigh waves, 
can be seen. These results, however, do not agree entirely with typical vertical motion time 
histories given elsewhere in the paper. These traces show a clear separation between the body 
wave arrivals and the Rayleigh wave arrival at a position as close as 16 ft (5 m) from a driven 
sheet pile. It is also interesting to note that the velocity amplitude of the Rayleigh wave is 
nearly 6 times as large as the body wave amplitude at this same distance. 

One might readily conclude that pile driving excites primarily Rayleigh waves. It is then 
evident that to obtain a propagation law coefficient of /I = -1.0, considerable energy must be 
lost to internal dissipation. In this case spreading losses alone would result in /I = -0.5. 

Additional results for a large number of pile driving measurements are given by Wiss [15], 
who found different propagation laws for different soil types. For wet and dry sand, Wiss 
suggests a propagation law of the form 

v= kx-“0. (17) 
On the other hand, in clay, ground motion was found to decay more rapidly with distance, 
and the suggested propagation law is 

V = kx-1.5. (18) 
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Both Wiss [15] and Attewell and Farmer [14] mention that for most sandy and clayey soils 
the principal frequency of vibratiori due to pile driving is generally found between 15 and 
35 Hz. No mention is made by any ofthese authors as to whether the principal frequency shifts 
down as distance from the pile is increased. Such behavior would be expected, of course, if the 
spectrum were rather broad and if the soil damping were frequency dependent. Such behavior 
has been reported for traffic induced vibration by Whiffin and Leonard [4]. 

4.3. TRAFFIC AND RAIL GENERATED VIBRATION 

Vibration generated along a road or railway can be (geometrically) modeled as a line 
source provided that the roadway surface is relatively uniform, and provided that the receiver 
is in the far field of the source, but less than approximately l/z times the length of the roadway 
or train?. In this case, if the assumption is made that the predominant ground motion is due to 
Rayleigh waves, there will be no spreading loss and any vibration attenuation will be due to 
soil damping. 

Based on these assumptions, vibration data at various distances from an elevated structure 
[7] and from an at-grade highway [8] is plotted as attenuation (A~) versus the distance in wave 
lengths (x/n) in Figures 6 and 7. If A,, were proportional to frequency one would expect the 
straight line relationships for the nominal soil values shown in Figure 2. However, the data 

I I I111111 I I I II/!I 

-10 1 1 1 1 I I 1 I I11111 I , I I,,,, 
0.5 I 2 5 IO 20 50 100 

x/x 

Figure 6. Dissipation attenuation in saturated clay, based on data taken near an elevated highway structure 
[7].O,X=l00ft; O,X=200ft;A,X=~ft. 

Figure 7. 
ft; 

Dissipation attenuation in dry sand, based on data taken near an at-grade highway 
0, x= 3ooft. 

[8]. ??, x = 100 

t Rathe [16] has calculated the cross-over point where a finite acoustic line source begins to look like a 
point source. While this calculation does not apply directly to R-waves, a similar calculation will show a cross- 
over near the distance of l/n times the source length. 
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shown in Figures 6 and 7 lines up quite well when plotted on semi-logarithmic paper, 
indicating a logarithmic rather than linear relationship. 

The data shown in Figure 6 was obtained by Hanson, Remington and Gutowski [7] at 
various distances from an elevated highway structure. The measurements were made by 
using a VLM type system. The transducer was mounted to a 4 in x 4 in x 4 in (10 cm x 
10 cm x O-6 cm) thick aluminum plate which was pressed into the saturated clay soil. Data 
obtained with this mounting technique was compared to results found by mounting the 
accelerometer on top of a 1 in x 1 in x 6 in (2.5 cm x 2.5 cm x 15 cm) long steel rod driven 
into the ground. When located at the same distance from a highway footing, the two mounting 
techniques, monitored simultaneously, were found to give readings within + 1.5 dB of one 
another over a frequency range of 2.5 Hz to 250 Hz. 

The attenuation values shown in Figure 6 represent the difference between the Llot of the 
rms peaks measured at 2 ft (O-6 m) and 100 ft (30 m), 200 ft (61 m), and 400 ft (122 m). To 
compute x/A, a Rayleigh wave speed of 500 ftjs (152 m/s) was assumed. 

Both linear and logarithmic curves were fitted to the data and it is readily apparent from 
the mathematics as well as straight-forward observation that a logarithmic curve gives a 
better fit. Note that the logarithmic curve appears as a straight line on the semi-logarithmic 
plot, while the linear curve, which was forced through the point x/A = 0, A~ = 0, actually 
appears curved. The resulting attenuation formulae and coefficents of correlation (r) then 
appear as follows : 

Ad = 0.8x/1 (r = O-68), 

Ad = 14logx/l (r = 0.86). 

The corresponding loss factor for equation (19) is rl= 0.03. 

(19) 

(20) 

It can also be observed in Figure 6 that the linear fit predicts more conservative attenuation 
values out to x = 252, and that the two curves are within f 5.5 dB from x = i to 34A. The 
trend of the data displayed in Figure 6 suggests a number of possibilities. It may well be that 
ground damping is non-linear: at close distances to the source, where the vibration amplitudes 
are large, there is more attenuation per wave length than at farther distances (smaller ampli- 
tudes). On the other hand, it may be that soil damping is linear, but at large distances strata or 
soil inhomogeneities reflect or scatter waves (body or Rayleigh) to the surface. 

This same trend can be seen in Figure 7. The attenuation values, derived from data reported 
by Blazier [8], are the difference in median rms acceleration levels at 100 ft (30 m), 200 ft 
(61 m) and 400 ft (122 m) from an at-grade highway. In these calculations, a Rayleigh wave 
speed of 600 ft/s (183 m/s) was assumed. This attenuation data is best fitted by a logarithmic 
curve of the form Ad = 12logx/A. The coefficient of correlation is r = 0.90. 

4.4. STEADY STATE, POINT SOURCE VIBRATION 

Two recent studies provide additional information concerning the attenuation of ground 
vibration with distance. Murray 1171 has recently investigated the propagation of vibration 
signals in alluvial fill, due to heavy machinery oscillation. His data has been plotted in Figure 8 
as the difference in rms acceleration levels at 1 ft (0.3 m) and at distances ranging from 9 ft 
(3 m) to 2000 ft (610 m). In order to show attenuation due to dissipation only, Murray’s data 
was first adjusted for spreading loss by a term -1Olog distance, appropriate for a point 
Rayleigh wave source. Further, a Rayleigh wave speed of 600 ft/s (183 m/s) was assumed. 
Murray’s data was fitted by a curve of the form Ad cc 11 logx/A. The coefficient of correlation 
for this curve is r = 0.70. 

White and Mannering [l l] report the results of a series of measurements in which vibration 

t The vibration level that is equalled or exceeded by 10% of the measured peaks. 
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Figure 8. 
Hz, on fill ; 

??
? ?

01 , I I h/111 / I /,lill, I i 1111111 
0.1 0.2 0.5 I 2 5 10 20 50 100 

x/x 

Dissipation attenuation in alluvial fill, based on data taken near a heavy machine [17]. ??,f= 7.8 
W, f= 7.8 Hz, on bedrock; o, f= 7.0 Hz, on fill. 

attenuation and soil impedance values, which were previously mentioned, are given. Data for 
both London clay, with a measured Rayleigh wave speed of 466 ftjs (142 m/s) and for Barton 
sand (wave speed not given) are presented. The authors point out that significant harmonic 
distortion was observed next to the source when the ground was driven with a sinusoidal 
vibrator at 40 Hz. There is no mention of the magnitude of the driving force, nor of the 
linearity of the vibrator itself; the harmonic distortion is attributed to non-linear soil 
behavior. Ground attenuation values are given for impacting and steady state point sources, 
with roughly similar results, for London clay. The steady state values, shown in Figure 9, 
have been adjusted to give only attenuation due to dissipation. The results at 246 ft (75 m) 

x/x 
Figure 9. Dissipation attenuation in London clay, based on experimental data [ll]. ??, x = 82 ft; o, x = 

246 ft. 

show very peculiar behavior, suggesting perhaps soil non-linearities. In Figure 10 the dissipa- 
tion attenuation, A,, versus x/n, assuming a Rayleigh wave speed of 800 ftjs (244 m/s) for sand 
is shown, The resulting soil loss factors for London clay at 82 ft (25 m), and Barton sand are 
q = O-1 1 and q = 0.07, respectively. The least squared curves and coefficients of correlation are 
shown in the figures. 
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x/x 
Figure 10. Dissipation attenuation in Barton sand, based on experimental data [l I]. 0, x = 82 ft ; 0, x = 164 

ft; ??,x=246ft; A, x=328ft. 

5. CONCLUSIONS 

There is much to be learned from the information presented in the preceding sections. 
Perhaps most important is the fact that the simple prediction models are not by themselves 
adequate for any serious purpose. This, in turn, is due to the wide variation in predicted 
attenuation values for soils of nominally similar (verbally, at least) descriptions. On the other 
hand, the empirical data itself may be questioned, for there is no standard measurement 
procedure. Thus, for serious practical work, the optimum approach will combine very careful 
measurement with seasoned analytical judgment. 

In spite of these drawbacks, however, there still are many ground vibration problems for 
which one cannot afford extensive individual measurements and yet requires certain tentative 
conclusions for guidance. For such cases, based on the results previously reviewed, a graphical 
summary displaying expected dissipation attenuation for various soil types is presented as 
Figure Il. These curves may be viewed as an alternative to the straightforward application 
of the ideal models presented earlier in this paper. 

Dry sand, 12 log x/X [8] 

Alluvial fill, II log x/X [l7] 

, I I I, 
2 5 IO 20 50 

x/x 

Figure 11. Summary of dissipation attenuation data for various soils. 
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